PyTorch迁移学习指南:深入掌握预训练模型微调技术(十一)

一、深入理解迁移学习原理(理论篇)

1.1 特征表示的可迁移性分析

深度卷积神经网络在不同层级学习到的特征具有明显的层次性特征:

网络层级 特征类型 可迁移性 可视化示例
Conv1 边缘/纹理 90%+ Gabor滤波器响应
Conv3 局部模式组合 80-90% 几何图形组合
Conv5 语义部件 60-70% 物体局部结构
FC层 类别专属特征 <30% 完整物体表征

数学上,特征可迁移性可以通过最大均值差异(MMD)度量:

MMD(X,Y)=∥1m∑i=1mϕ(xi)−1n∑j=1nϕ(yj)∥H2 MMD(X,Y) = \left\| \frac{1}{m}\sum_{i=1}^m\phi(x_i) - \frac{1}{n}\sum_{j=1}^n\phi(y_j) \right\|_{\mathcal{H}}^2 MMD(X,Y)= m1i=1mϕ(xi)n1j=1nϕ(yj) H2

其中ϕ(⋅)\phi(\cdot)ϕ()表示特征映射函数。

1.2 小样本学习理论边界

根据统计学习理论,使用迁移学习时所需样本量满足:

N≥VC(H)+log⁡(1/δ)ϵ2⋅(1−MMD(Xsrc,Xtar))2 N \geq \frac{VC(\mathcal{H}) + \log(1/\delta)}{\epsilon^2 \cdot (1 - MMD(X_{src}, X_{tar}))^2} Nϵ2(1MMD(Xsrc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值