
分布式训练
文章平均质量分 93
分布式训练核心技术
WHCIS
新入圈的萌新
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
去中心化训练:OneFlow的全局视角与一致性哈希优化
定义mmmH01⋯2m−1H01⋯2m−1对于物理节点集合Nn1nkNn1...nk,每个节点创建vvvVihni∣∣0hni∣∣1hni∣∣v−1Vihni∣∣0hni∣∣1...hni∣∣v−1)}其中h⋅h(\cdot)h⋅是哈希函数,∣∣||∣∣表示字符串拼接。虚拟节点分布定理当v≥2lnNϵ。原创 2025-02-14 04:48:31 · 1029 阅读 · 0 评论 -
超大规模模型训练:Megatron-LM模型并行策略解析
这相当于300块A100 GPU的显存总和。NVIDIA Megatron-LM通过。(张量并行+流水线并行+数据并行)的协同设计,将训练效率提升17.8倍。当GPT-3的参数量突破1750亿时,传统单卡训练显存需求高达。为缩放因子(通常1024-65536),当使用FP16训练时,分片操作需引入。(Loss Scaling)和。采用硅光技术实现TB级互联带宽。为阈值(1.0-100.0)发送微批次1 (异步)原创 2025-02-14 04:33:50 · 750 阅读 · 0 评论 -
混合精度训练:FP16与梯度缩放的科学实践
策略配置# 模型构建(自动处理层类型)tf.keras.layers.Dense(1024, activation='relu'), # 自动使用FP16tf.keras.layers.BatchNormalization(), # 强制使用FP32tf.keras.layers.Dense(10, dtype='float32') # 输出层FP32])# 优化器封装# 前向传播(自动混合精度)# 梯度计算与反缩放# 梯度裁剪# 参数更新。原创 2025-02-14 04:23:26 · 870 阅读 · 0 评论 -
通信优化核心技术:Ring AllReduce与NCCL协议的剖析
在大规模分布式训练中,通信优化是提升训练效率的核心。基于硅光子的新型互连技术理论带宽可达10TB/s,延迟降低至纳秒级。在4096 GPU集群中,相比传统Ring算法时延降低63%。时,传统通信协议(如MPI)的通信时间占比可达70%以上。对于Ring AllReduce,每个分块需要。实验表明可节省50%通信带宽,精度损失可忽略。时,带宽利用率趋近于理论最大值。原创 2025-02-14 04:12:21 · 1328 阅读 · 0 评论 -
同步 vs. 异步训练:梯度更新的收敛性与效率博弈
此时收敛速度可提升至。同步与异步训练的取舍是。原创 2025-02-14 03:44:26 · 1149 阅读 · 0 评论 -
分布式训练三大并行策略:数据、模型与流水线并行的本质解析
设有K个Worker,各Worker本地梯度为。原创 2025-02-14 03:09:01 · 1356 阅读 · 0 评论