力扣 -- 322. 零钱兑换(完全背包问题)

本文介绍了如何使用优化的动态规划算法解决货币找零问题,对比了未优化和优化版本的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考代码:

未优化代码:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int n = coins.size();
        const int INF = 0x3f3f3f3f;
        //多开一行,多开一列
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1));

        //初始化
        dp[0][0] = 0;
        for (int j = 1; j <= amount; j++)
        {
            //根据后面填表时取min的性质,所以无效值应该设置成正无穷大
            dp[0][j] = INF;
        }

        //填表
        for (int i = 1; i <= n; i++)
        {
            for (int j = 0; j <= amount; j++)
            {
                dp[i][j]=dp[i - 1][j];
                if(j>=coins[i-1])
                {
                    //注意,这里是取min,所以不存在的值应该设成正无穷大才对,不能选择-1作为无效值
                    dp[i][j]=min(dp[i][j],dp[i][j - coins[i - 1]]+1);
                }
            }
        }

        return dp[n][amount]>=INF?-1:dp[n][amount];
    }
};

优化后的代码:


class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int n = coins.size();
        const int INF = 0x3f3f3f3f;
        //多开一行,多开一列
        //初始化
        vector<int> dp(amount + 1,INF);
        dp[0] = 0;

        //填表
        for (int i = 1; i <= n; i++)
        {
            for (int j = coins[i-1]; j <= amount; j++)
            {
                //注意,这里是取min,所以不存在的值应该设成正无穷大才对,不能选择-1作为无效值
                dp[j]=min(dp[j],dp[j - coins[i - 1]]+1);
            }
        }

        return dp[amount]>=INF?-1:dp[amount];
    }
};

你学会了吗???

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值