用python实现多元线性回归模型

import numpy as np
from sklearn.linear_model import LinearRegression

# 手动实现多元线性回归
def multiple_linear_regression(X, y):
    X_b = np.c_[np.ones((X.shape[0], 1)), X]
    theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
    return theta

# 示例数据
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
y = np.array([3, 5, 7, 9, 11])

# 手动实现的多元线性回归
theta = multiple_linear_regression(X, y)
print("手动实现的多元线性回归结果:")
print("截距:", theta[0])
print("回归系数:", theta[1:])

# 预测新数据
new_X = np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值