import numpy as np
from sklearn.linear_model import LinearRegression
# 手动实现多元线性回归
def multiple_linear_regression(X, y):
X_b = np.c_[np.ones((X.shape[0], 1)), X]
theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
return theta
# 示例数据
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
y = np.array([3, 5, 7, 9, 11])
# 手动实现的多元线性回归
theta = multiple_linear_regression(X, y)
print("手动实现的多元线性回归结果:")
print("截距:", theta[0])
print("回归系数:", theta[1:])
# 预测新数据
new_X = np
用python实现多元线性回归模型
最新推荐文章于 2025-05-28 08:47:40 发布