基于CNN卷积神经网络的AI智能分拣系统

目录

Linux下摄像头数据的采集和Python服务器接收照片数据集

Python服务器搭建卷积神经网络并训练出模型

Qt终端界面的开发

STM32开发板的开发

Python服务器进行模型检测


        这个系统分为四个模块,分别是Linux下摄像头数据的采集,Python服务器卷积神经网络的搭建和模型检测,Qt图形化界面的设计和STM32开发板的开发。

        主要的设计思想是用Linux虚拟机收集大量的物品照片,然后将这些信息传送给Python服务器,Python服务器对这些照片进行卷积神经网络的搭建,训练出模型,然后根据模型来识别新扫描的物体,将识别结果传递给Qt客户端和STM32客户端,Qt客户端通过图形化的界面和声音来显示分拣结果,而STM32客户端通过亮不同的灯和用屏幕显示物体的类别的方式来显示不同的结果。具体的设计C/S架构如下图所示:

下面我将分以下几个模块分别介绍这四个部分的相关内容:

Linux下摄像头数据的采集和Python服务器接收照片数据集

主要要建立Linux客户段和Python服务器之间的TCP连接,两者要保持相同的IP地址和端口号

运行界面如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值