目录
最近在看数据结构的考研课程,前期跟着y总学过一部分算法基础,但是建立在不懂图论,不会离散数学和数据结构的基础之上,学得非常非常吃力还不知道为什么吃力,现在回过头来(说实话,这个觉悟来的太迟了)去看这个最小生成树的代码,明显变得简单易学了,现在再看y总的代码,也能真正感受到y总强大的代码逻辑了。所以结合y总的代码和我的理解,记录以下思路。
最小生成树(Minimun Spanning Tree)
针对带权连通无向图而言,表示权值之和最小的树,最小生成树的树形可能不唯一,但是权值之和一定唯一且最小,因为是树(无环连通无向图),所以一定有n个顶点和n-1条边。
除此之外,最小生成树能保证全局的权值最小,但不能保证任意两个点之间的路径长度最短,适用于解决例如设计最低成本的网络结构,最低成本的电路布线,最低成本的道路规划等诸如此类的问题。
最常用的两种算法是Prim算法和Kruskal算法,下面将分别介绍他们。
Prim算法
主要思路
从没有加入最小生成树的点中选择一个到最小生成树代价最小的点,将他加入到最小生成树当中(更新点的状态和当前权值之和),然后更新所有的点到当前生成树的最短距离(lowcost[]数组)----主要更新的是没在生成树中的,且和刚刚新加入的点邻接的点的lowcost[]的值,但是在邻接矩阵找邻接点需要遍历所有的点,所以干脆直接更新所有的点到当前生成树的最短距离,即整个lowcost[]数组。
主要步骤
1.找lowcost[]数组最小值的点 O(V)
2.将该点加入最小生成树 O(1)
3.更新整个lowcost[]数组 O(V)
具体代码
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 0x3f
const int N=5020;
int g[N][N];
int lowcost[N];
bool st[N];
int m,n;
int Prim()
{
int res=0;
memset(st,false,sizeof(st));
memset(lowcost,MAX,sizeof(lowcost));
for(int i=0;i<m;i++)
{
int k=-1;
for(int j=1;j<=m;j++) //第一轮循环只加入一个顶点,后面每轮加入一个顶点和一条边,所以第一轮需要特殊处理
{
if(!st[j]&&(k==-1||lowcost[k]>lowcost[j]))
//!st[j]&&k==-1:第一轮循环默认从第一个点开始,此时lowcost[k]==INF,需要特殊处理
{
k=j;
} //找到没有进入最小生成树的代价最小的点
}
if(i&&lowcost[k]==INF) return INF; //特殊处理
if(i)
{
//st[k]=true; //写在此处是错的,因为第一个点的时候虽然没有权值,但是还是需要将点加入到最小生成树当中的
res+=lowcost[k]; //将这个点加入最小生成树
}
for(int j=1;j<=m;j++)
{
lowcost[j]=min(lowcost[j],g[k][j]); //更新没有加入的点的最小代价
}
st[k]=true;
}
return res;
}
int main()
{
memset(g,MAX,sizeof(g));
freopen("A.txt","r",stdin);
cin>>m>>n; //m个顶点,n条边
while(n--)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
g[b][a]=min(g[b][a],c);
}
int t=Prim();
if(t!=INF) cout<<t<<endl;
else cout<<"不存在最小生成树"<<endl;
return 0;
}
时间复杂度:O(V²),因为和边无关,所以适用于边稠密带权连通无向图
Kruskal算法
859. Kruskal算法求最小生成树 - AcWing题库
主要思路
排序所有的边,然后从小到大遍历所有的边,如果边的两个端点不连通,就使他们连通,如果已经连通,就不要这条边,直到所有顶点都连通为止。
用到并查集,即一开始所有的顶点都不连通,如果要求两个顶点连通,就用Union(a,b)将两个顶点连通,如果要求检查两个点是否连通就用Find(x)找到两个点的祖先,然后通过比较两个祖先是否相等来判断两个点是否连通。
对顶点的存储用到的是双亲表示法,即用一个数组p[x]表示x结点的双亲,对边的存储由于涉及排序,所以用一个struct结构体来存储
1.排序 O(ElogE)
2.找祖先节点 O(logE)
具体代码
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
const int N=200020;
int m,n;
int p[N]; //用来存放每个节点的父节点(下标x表示当前节点,p[x]表示x的父节点)
struct edge
{
int a,b,w;
bool operator<(const edge &W)const //重载<
{
return w<W.w;
}
}edge[N];
int find(int x) //只有根节点的p[x]==x:是一个递归出口
{
if(p[x]!=x) p[x]=find(p[x]); //p[x]一开始是父节点,到后来就变成祖先节点
return p[x];
}
int Kruskal()
{
int res=0;
int cnt=0;
for(int i=1;i<=n;i++) p[i]=i; //并查集初始化
sort(edge+1,edge+n+1); //排序
for(int i=1;i<=n;i++)
{
int a=edge[i].a;
int b=edge[i].b;
a=find(a);
b=find(b);
if(a!=b)
{
p[a]=b; //将这两个点连通
res+=edge[i].w;
cnt++;
}
}
if(cnt<m-1) return INF; //m个顶点的生成树需要m-1条边
return res;
}
int main()
{
freopen("A.txt","r",stdin);
cin>>m>>n; //m个顶点,n条边
for(int i=1;i<=n;i++)
{
int a,b,w;
cin>>a>>b>>w;
edge[i].a=a;
edge[i].b=b;
edge[i].w=w;
}
int t=Kruskal();
if(t==INF) cout<<"不存在最小生成树"<<endl;
else cout<<t<<endl;
return 0;
}
时间复杂度:O(ElogE),适用于边稀疏带权连通无向图
总结
现在总算是彻底理解这两个算法,学算法的过程怎么说呢,拖泥带水,破罐子破摔了好久好久,最后结果是该什么样还是什么样。
希望现在自己不要半途而废,好好复习,积极向上,脚踏实地。