最小生成树(MST)Prim算法和Kruskal算法

目录

最小生成树(Minimun Spanning Tree)

Prim算法

主要思路

主要步骤

具体代码

Kruskal算法

主要思路

具体代码

总结


        最近在看数据结构的考研课程,前期跟着y总学过一部分算法基础,但是建立在不懂图论,不会离散数学和数据结构的基础之上,学得非常非常吃力还不知道为什么吃力,现在回过头来(说实话,这个觉悟来的太迟了)去看这个最小生成树的代码,明显变得简单易学了,现在再看y总的代码,也能真正感受到y总强大的代码逻辑了。所以结合y总的代码和我的理解,记录以下思路。


最小生成树(Minimun Spanning Tree)

        针对带权连通无向图而言,表示权值之和最小的树,最小生成树的树形可能不唯一,但是权值之和一定唯一且最小,因为是树(无环连通无向图),所以一定有n个顶点和n-1条边。

        除此之外,最小生成树能保证全局的权值最小,但不能保证任意两个点之间的路径长度最短,适用于解决例如设计最低成本的网络结构,最低成本的电路布线,最低成本的道路规划等诸如此类的问题。

        最常用的两种算法是Prim算法和Kruskal算法,下面将分别介绍他们。

Prim算法

858. Prim算法求最小生成树 - AcWing题库

主要思路

        从没有加入最小生成树的点中选择一个到最小生成树代价最小的点,将他加入到最小生成树当中(更新点的状态和当前权值之和),然后更新所有的点到当前生成树的最短距离(lowcost[]数组)----主要更新的是没在生成树中的,且和刚刚新加入的点邻接的点的lowcost[]的值,但是在邻接矩阵找邻接点需要遍历所有的点,所以干脆直接更新所有的点到当前生成树的最短距离,即整个lowcost[]数组。

主要步骤

1.找lowcost[]数组最小值的点    O(V)

2.将该点加入最小生成树    O(1)

3.更新整个lowcost[]数组    O(V)

具体代码
#include<bits/stdc++.h>

using namespace std;

#define INF 0x3f3f3f3f
#define MAX 0x3f

const int N=5020;
int g[N][N];
int lowcost[N];
bool st[N];
int m,n;
 
int Prim()
{
	int res=0;
	memset(st,false,sizeof(st));
	memset(lowcost,MAX,sizeof(lowcost));
	for(int i=0;i<m;i++) 
	{
		int k=-1;
		for(int j=1;j<=m;j++)   //第一轮循环只加入一个顶点,后面每轮加入一个顶点和一条边,所以第一轮需要特殊处理
		{
			if(!st[j]&&(k==-1||lowcost[k]>lowcost[j]))    
            //!st[j]&&k==-1:第一轮循环默认从第一个点开始,此时lowcost[k]==INF,需要特殊处理
			{
				k=j;
			}                                             //找到没有进入最小生成树的代价最小的点 
		}
		if(i&&lowcost[k]==INF) return INF;  //特殊处理 
		if(i) 
		{
            //st[k]=true; //写在此处是错的,因为第一个点的时候虽然没有权值,但是还是需要将点加入到最小生成树当中的 
			res+=lowcost[k];                             //将这个点加入最小生成树 
		}                        
		for(int j=1;j<=m;j++)
		{ 
			lowcost[j]=min(lowcost[j],g[k][j]);        //更新没有加入的点的最小代价 
		}
		st[k]=true;
	}
	return res;
}

int main()
{
	memset(g,MAX,sizeof(g));
	freopen("A.txt","r",stdin);
	cin>>m>>n;  //m个顶点,n条边 
	while(n--)
	{
		int a,b,c;
		cin>>a>>b>>c;
		g[a][b]=min(g[a][b],c);
		g[b][a]=min(g[b][a],c);
	}
	int t=Prim();
	if(t!=INF) cout<<t<<endl;
	else cout<<"不存在最小生成树"<<endl;
	return 0; 	
} 

时间复杂度:O(V²),因为和边无关,所以适用于边稠密带权连通无向图

Kruskal算法

859. Kruskal算法求最小生成树 - AcWing题库

主要思路

        排序所有的边,然后从小到大遍历所有的边,如果边的两个端点不连通,就使他们连通,如果已经连通,就不要这条边,直到所有顶点都连通为止。

        用到并查集,即一开始所有的顶点都不连通,如果要求两个顶点连通,就用Union(a,b)将两个顶点连通,如果要求检查两个点是否连通就用Find(x)找到两个点的祖先,然后通过比较两个祖先是否相等来判断两个点是否连通。

        对顶点的存储用到的是双亲表示法,即用一个数组p[x]表示x结点的双亲,对边的存储由于涉及排序,所以用一个struct结构体来存储

1.排序    O(ElogE)

2.找祖先节点    O(logE)

具体代码
#include<bits/stdc++.h>

using namespace std;

#define INF 0x3f3f3f3f

const int N=200020;
int m,n;
int p[N];   //用来存放每个节点的父节点(下标x表示当前节点,p[x]表示x的父节点) 

struct edge
{
	int a,b,w;
	bool operator<(const edge &W)const  //重载< 
	{
		return w<W.w;
	}
}edge[N];

int find(int x)   //只有根节点的p[x]==x:是一个递归出口 
{
	if(p[x]!=x) p[x]=find(p[x]);    //p[x]一开始是父节点,到后来就变成祖先节点
	return p[x];
}

int Kruskal()
{
	int res=0; 
	int cnt=0; 
	for(int i=1;i<=n;i++) p[i]=i;  //并查集初始化 
	sort(edge+1,edge+n+1);  //排序
	for(int i=1;i<=n;i++)
	{
		int a=edge[i].a;
		int b=edge[i].b;
		a=find(a);
		b=find(b); 
		if(a!=b)
		{
		    p[a]=b;  //将这两个点连通 
		    res+=edge[i].w;
		    cnt++;
		}
	} 
	if(cnt<m-1) return INF;   //m个顶点的生成树需要m-1条边 
	return res;
}

int main()
{
	freopen("A.txt","r",stdin);
	cin>>m>>n;  //m个顶点,n条边 
	for(int i=1;i<=n;i++)
	{
		int a,b,w;
		cin>>a>>b>>w;
		edge[i].a=a;
		edge[i].b=b;
		edge[i].w=w;
	}
	int t=Kruskal();
	if(t==INF) cout<<"不存在最小生成树"<<endl; 
	else cout<<t<<endl;
	return 0;
} 

 时间复杂度:O(ElogE),适用于边稀疏带权连通无向图

总结

        现在总算是彻底理解这两个算法,学算法的过程怎么说呢,拖泥带水,破罐子破摔了好久好久,最后结果是该什么样还是什么样。

        希望现在自己不要半途而废,好好复习,积极向上,脚踏实地。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值