利用ultralytics版本的RT-DERT训练NEU-DET缺陷数据集(windows版本和服务器版本教程)

数据集

NEU-DET缺陷数据集是东北大学(NEU)发布的表面缺陷数据库,收集了热轧钢带的六种典型表面缺陷,即轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc)

地址1(源文件voc.XML格式)

链接: https://pan.baidu.com/s/1vRB0USgHY0n3tzW3CQOG9w?pwd=bnm2 提取码: bnm2

地址二(coco.json格式)

链接: https://pan.baidu.com/s/1FAjAZ76OumhCJvmN0WvkDQ?pwd=1ce3 提取码: 1ce3

地址三(yolo格式.txt格式)

链接: https://pan.baidu.com/s/1LgNKunzrWVcYLPxFL57pYw?pwd=cnun 提取码: cnun

三个地址的训练集,验证集和测试集已经划分完毕,直接可以使用。

RT-DERT模型版本

RT-DERT论文地址:https://arxiv.org/pdf/2304.08069

论文中的代码地址:https://github.com/lyuwenyu/RT-DETR

ultralytics版本地址:GitHub - ult

03-17
### NEU-DET 数据集及相关深度学习框架介绍 #### 关于 NEU-DET 数据集 NEU-DET 是一种专门针对工业领域设计的钢材表面缺陷检测数据集。该数据集中包含了多种类型的钢材表面缺陷图像,这些图像被标注为不同的类别以便进行分类目标检测任务。通过使用此数据集,研究人员能够开发更加精确的算法来识别定位各种钢材表面缺陷。 为了有效训练模型,在实际操作过程中可能需要调整配置文件中的路径设置以匹配本地环境下的数据存储位置[^1]。例如,在 ultralytics 的 settings.yaml 文件中修改 datasets_dir 路径至与 NEU-DET.yaml 中定义的一致,从而确保程序能正确加载所需的数据集。 #### 使用 Ultralytics 版本 YOLO 进行 NEU-DET 缺陷检测 对于希望采用预构建解决方案快速搭建应用系统的开发者来说,基于 ultralytics 提供的支持使得利用最新版 YOLO 架构完成 NEU-DET 上的任务变得非常便捷。具体而言: - **训练流程**: 参考文档说明了如何分别在 Windows 服务器环境下执行 RT-DERT (Real-Time Detection with Efficient Refined Training) 方法对 NEU-DET 数据集实施训练过程。 - **优化策略**: 当遇到诸如“找不到文件”的错误提示时,应核查相关目录结构是否符合预期,并按照指引修正相应参数设定。 此外值得注意的是,尽管当前主流方法倾向于依赖复杂计算单元实现高性能表现,但也存在像 DySample 这样的创新方案试图简化架构同时保持竞争力[^2]。这类技术进步有助于降低硬件需求门槛,扩大适用范围。 #### 基于 YOLOv8 的完整项目案例分享 另一个值得关注的方向是由社区贡献者整理发布的综合型资源包[^3],它不仅涵盖了基础代码逻辑还附加了许多实用组件: - Python 实现细节覆盖整个生命周期阶段——从初始建模直至最终部署; - 预先导出好的 ONNX 格式推理引擎便于跨平台移植; - 完整记录各项评估指标变化趋势可视化图表辅助分析效果优劣程度; - 用户友好图形化交互界面进一步提升了易用性可维护性水平。 以上要素共同构成了一个功能齐全且易于扩展的基础框架,非常适合初学者入门或者企业内部原型验证之需。 ```python import torch from ultralytics import YOLO # 加载已有的YOLOv8模型权重 model = YOLO('path/to/yolov8s.onnx') # 对测试图片运行预测 results = model.predict(source='test_img/', save=True) print(results) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值