流程工业控制系统的知识图谱构建

本文探讨了流程工业控制系统知识图谱的构建,包括自顶向下和自底向上的方法,强调了面向任务需求、结合专家经验与数据抽取的原则。通过案例分析,展示了信息物理资产管理任务的知识图谱构建流程。知识图谱在风险分析、虚拟制造、关键指标预测和控制算法自适应调整等方面具有潜在应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘 要】近年来,工业控制系统智能化的趋势方兴未艾,相关新技术新思想不断被提出。知识图谱是人工智能应用的基础资源,构建专业领域知识图谱已经成为研究热点。然而,控制系统知识图谱构建尚处于发展初期。对控制系统的结构特点和任务要求进行分析,给出控制系统的知识图谱构建的方法框架。首先对已有的流程工业控制系统知识图谱构建的工作进行总结,阐述了工业控制系统的特点,给出了控制系统知识图谱构建的基本原则和流程,并以控制系统信息物理资产管理任务为例进行了详细的知识图谱构建说明。最后,对未来的研究方向进行了展望。

【关键词】控制系统 ; 领域知识图谱 ; 物理信息系统 ; 构建技术

0 引言

2011 年,国际商业机器公司(international business machines corporation,IBM)的Watson赢得“Jeopardy”电视智力竞赛,用于支持其知识发现的知识图谱技术引发了研究者的广泛关注;2012年谷歌公司发布了包含570亿实体的大规模知识图谱,展示了知识图谱在知识工程中的巨大应用潜力。在刚刚过去的 10 年间,知识图谱因为其处理多源异构数据的能力、高效的知识检索、深入的知识挖掘和分析以及直观的知识可视化的能力,受到了学术界和工业界的广泛关注,取得了迅猛的发展。

知识图谱可以定义为由实体(节点)和关系(边)组成的多关系的图形知识库。在知识图谱中,知识以三元组(实体-关系-实体或者实体-属性-值)的形式存储。按照知识领域和应用范围的不同,知识图谱可以分为通用知识图谱和领域知识图谱。通用知识图谱涉及知识范围广,知识量大,且多为常识知识,已经有DBpedia、Freebase、YAGO、NELL等代表性的工

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值