
机器学习
文章平均质量分 86
Wendy1441
沉没成本不参与重大决策
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【无监督学习之K-means算法】——机器学习
{'k-means++', 'random'}, callable 或传入的数组,默认为'k-means++'。该算法的目标是将数据集中的样本划分为K个簇,使得簇内的样本彼此之间的差异最小化。无监督学习模型算法中,模型只需要使用特征矩阵X即可,不需要真实的标签y,聚类算法是无监督学习中的代表之一。K-means 算法输入的是 k 值和样本数据结合,输出的是 k 个簇的集合。个质心的距离(通常是欧氏距离),将样本点分配到最近的一个质心,生成。对于每个簇,计算所有被分该簇的样本点的平均值作为新的质心。原创 2025-07-18 17:21:03 · 627 阅读 · 0 评论 -
【逻辑回归】——机器学习
然后使用梯度下降算法,去减少损失函数的值,这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率.sigmoid函数的值是在[0,1]区间中的一个概率值,默认为0.5为阈值可以自己设定,大于0.5认为是正例,小于则认为是负例。逻辑回归(Logistic Regression)是机器学习中的一种分类模型,当y=1时,我们希望h\theta(x) 值越大越好。当y=0时,我们希望h\theta(x) 值越小越好。逻辑回归的输入是线性回归的输出。可以托付终身还是不可以。原创 2025-07-18 17:13:58 · 403 阅读 · 0 评论 -
【线性回归(欠拟合过拟合+岭回归Ridge+拉索回归Lasso)】——机器学习
第一个更好,因为下面的公式是上面的十倍,当w越小公式的容错的能力就越好。我们都知道人工智能中回归是有误差的,为了把误差降低而拟合出来的一个接近真实的公式,比如把一个测试数据[10,20]带入计算得到的值跟真实值会存在一定的误差,但是第二个方程会把误差放大,公式中y = W^Tx,当x有一点错误,这个错误会通过w放大。就像计算机软件在面临攻击、网络过载等情况下能够不死机不崩溃,这就是软件的鲁棒性,鲁棒性调优就是让模型拥有更好的鲁棒 性,也就是让模型的泛化能力和推广能力更加的强大。原创 2025-07-18 16:02:58 · 542 阅读 · 0 评论 -
【线性回归(梯度下降)】——机器学习
假设你在一个陌生星球的山地上,你想找到一个谷底,那么肯定是想沿着向下的坡行走,如果想尽快的走到谷底,那么肯定是要沿着最陡峭的坡下山。每走一步,都找到这里位置最陡峭的下坡走下一步,这就是梯度下降。在这个比喻中,梯度就像是山上的坡度,告诉我们在当前位置上地势变化最快的方向。为了尽快走向谷底,我们需要沿着最陡峭的坡向下行走,而梯度下降算法正是这样的方法。每走一步,我们都找到当前位置最陡峭的下坡方向,然后朝着该方向迈进一小步。这样,我们就在梯度的指引下逐步向着谷底走去,直到到达谷底(局部或全局最优点)。原创 2025-07-18 08:50:52 · 1036 阅读 · 0 评论 -
【线性回归(最小二乘法MSE)】——机器学习
虽然这个案例中n=8,但是常常令n=2,因为是一个常数 求最小值时n随便取哪个正数都不会影响W结果,但是求导过程可以约掉前面的系数,会加速后面的计算。被爱:11 学习指数:14 抗压指数:8 运动指数:10 饮食水平:5 金钱:10 权利:8 压力:1。3.进行求导(注意X,y都是已知的,W是未知的)是欧几里得范数的平方,也就是每个元素的平方相加。分别用W各项乘以新的X 就可以得到y健康程度。高斯把公式给了,但是何时loss最小呢?5.矩阵没有除法,使用逆矩阵转化。那么karen的健康程度是多少?原创 2025-07-17 19:35:44 · 512 阅读 · 0 评论 -
【线性回归(定义+损失函数+多参数回归)】——机器学习
回归的目的是预测数值型的目标值y。最直接的办法是依据输入x写出一个目标值y的计算公式。假如你想预测小姐姐男友汽车的功率,可能会这么计算:写成中文就是:小姐姐男友汽车的功率 = 0.0015 * 小姐姐男友年薪 - 0.99 * 收听公共广播的时间这就是所谓的回归方程(regression equation),其中的0.0015和-0.99称为回归系数(regression weights),求这些回归系数的过程就是回归。原创 2025-07-17 19:04:15 · 697 阅读 · 0 评论