代码案例功能解读
这部分代码使用了GGally
包中的ggpairs
函数来进行数据可视化和探索性分析。下面对代码进行模块说明,并解释生成的图表。
- 加载所需的包和函数:
RCopy Code
library(GGally) p_ <- GGally::print_if_interactive
- 首先加载了
GGally
包,并定义了一个print_if_interactive
函数的别名。
- 示例数据集和基本图表:
RCopy Code
data(flea) ggpairs(flea, columns = 2:4) pm <- ggpairs(flea, columns = 2:4, ggplot2::aes(colour=species)) p_(pm)
- 加载示例数据集
flea
,并使用ggpairs
函数绘制数据集中列2到4的散点图矩阵。 - 然后,使用
ggpairs
函数创建一个带有颜色映射的散点图矩阵,其中颜色按照物种(species)进行编码。 - 最后,通过调用
p_
函数来显示绘制的图表。
- 不同类型的图表:
RCopy Code
data(tips, package = "reshape") pm <- ggpairs(tips[, 1:3]) p_(pm) pm <- ggpairs(tips, 1:3, columnLabels = c("Total Bill", "Tip", "Sex")) p_(pm) pm <- ggpairs(tips, upper = "blank") p_(pm)
- 加载示例数据集
tips
,并使用ggpairs
函数分别绘制前3列的散点图矩阵。 - 接着,使用
ggpairs
函数绘制包含自定义列标签的散点图矩阵。 - 最后,使用
ggpairs
函数绘制一个只有下三角区域的空白散点图矩阵。
- 绘图类型:
RCopy Code
pm <- ggpairs( tips[, c(1, 3, 4, 2)], upper = list(continuous = "density", combo = "box_no_facet"), lower = list(continuous = "points", combo = "dot_no_facet") ) p_(pm)
- 使用
ggpairs
函数绘制一个具有不同绘图类型的散点图矩阵。上三角区域使用密度图和箱线图组合的方式绘制,下三角区域使用散点图和点图组合的方式绘制。
- 使用自定义函数:
RCopy Code
pm <- ggpairs( tips[, c(1, 3, 4, 2)], upper = list(continuous = ggally_density, combo = ggally_box_no_facet), lower = list(continuous = ggally_points, combo = ggally_dot_no_facet) ) p_(pm)
- 使用自定义的函数替代默认的绘图函数来绘制散点图矩阵。上三角区域使用自定义的密度图和箱线图函数,下三角区域使用自定义