R语言相关分析及分布分析矩阵GGally包应用分享

代码案例功能解读

这部分代码使用了GGally包中的ggpairs函数来进行数据可视化和探索性分析。下面对代码进行模块说明,并解释生成的图表。

  1. 加载所需的包和函数:
RCopy Code

library(GGally) p_ <- GGally::print_if_interactive
  • 首先加载了GGally包,并定义了一个print_if_interactive函数的别名。
  1. 示例数据集和基本图表:
 
RCopy Code

data(flea) ggpairs(flea, columns = 2:4) pm <- ggpairs(flea, columns = 2:4, ggplot2::aes(colour=species)) p_(pm)
  • 加载示例数据集flea,并使用ggpairs函数绘制数据集中列2到4的散点图矩阵。
  • 然后,使用ggpairs函数创建一个带有颜色映射的散点图矩阵,其中颜色按照物种(species)进行编码。
  • 最后,通过调用p_函数来显示绘制的图表。
  1. 不同类型的图表:
 
RCopy Code

data(tips, package = "reshape") pm <- ggpairs(tips[, 1:3]) p_(pm) pm <- ggpairs(tips, 1:3, columnLabels = c("Total Bill", "Tip", "Sex")) p_(pm) pm <- ggpairs(tips, upper = "blank") p_(pm)
  • 加载示例数据集tips,并使用ggpairs函数分别绘制前3列的散点图矩阵。
  • 接着,使用ggpairs函数绘制包含自定义列标签的散点图矩阵。
  • 最后,使用ggpairs函数绘制一个只有下三角区域的空白散点图矩阵。
  1. 绘图类型:
 
RCopy Code

pm <- ggpairs( tips[, c(1, 3, 4, 2)], upper = list(continuous = "density", combo = "box_no_facet"), lower = list(continuous = "points", combo = "dot_no_facet") ) p_(pm)
  • 使用ggpairs函数绘制一个具有不同绘图类型的散点图矩阵。上三角区域使用密度图和箱线图组合的方式绘制,下三角区域使用散点图和点图组合的方式绘制。
  1. 使用自定义函数:
 
RCopy Code

pm <- ggpairs( tips[, c(1, 3, 4, 2)], upper = list(continuous = ggally_density, combo = ggally_box_no_facet), lower = list(continuous = ggally_points, combo = ggally_dot_no_facet) ) p_(pm)
  • 使用自定义的函数替代默认的绘图函数来绘制散点图矩阵。上三角区域使用自定义的密度图和箱线图函数,下三角区域使用自定义
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安宁ᨐ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值