
4.pytorch实际应用
文章平均质量分 56
简单的实战代码,一步步深入pytorch的实战用法
YANQ662
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
7.unet网络模型的简单实现(python)
本文属于 Pytorch 深度学习语义分割系列教程。Pytorch 的基本使用语义分割算法讲解点击查看本文主要讲解了训练模型的三个步骤:数据加载、模型选择、算法选择。这是一个简单的例子,训练正常的视觉任务,要复杂很多。比如:在训练模型的时候,需要根据模型在验证集上的准确率选择保存哪个模型;需要支持tensorboard方便我们观察loss收敛情况等等。原创 2024-04-25 12:29:32 · 1784 阅读 · 0 评论 -
6.Vgg16--CNN经典网络模型详解(pytorch实现)
3.下载完后写一个spile_data.py文件,将数据集进行分类。4.再写一个train.py文件,用来训练模型。原创 2024-04-24 17:55:24 · 668 阅读 · 0 评论 -
5.Resnet50网络模型的实现
3.下载完后写一个spile_data.py文件,将数据集进行分类。4.再写一个train.py文件,用来训练模型。原创 2024-04-24 16:14:31 · 353 阅读 · 0 评论 -
4.Mobilenetv2网络的简单目标识别的实现
3.下载完后写一个spile_data.py文件,将数据集进行分类。4.再写一个train.py文件,用来训练模型。5.写一个预测的predict.py文件。原创 2024-04-24 14:47:39 · 358 阅读 · 0 评论 -
3.AlexNet--CNN经典网络模型详解(pytorch实现)
该博客的作者写的很详细,是一个简单的目标分类的代码,可以通过该代码深入了解目标检测的简单框架。在这里不作详细的赘述,如果想更深入的了解,可以看另一个博客。原创 2024-04-18 16:28:07 · 658 阅读 · 0 评论 -
2.pytorch区分类型(分类模型)
x0 = torch.normal(2*n_data, 1) # 类型0 x data (tensor), shape=(100, 2)x1 = torch.normal(-2*n_data, 1) # 类型1 x data (tensor), shape=(100, 1)net = Net(n_feature=2, n_hidden=10, n_output=2) # 几个类别就几个 output。loss_func=torch.nn.CrossEntropyLoss()#损失函数。原创 2023-08-09 14:16:01 · 177 阅读 · 0 评论 -
1.pytorch实现关系拟合(回归)
self.hidden=torch.nn.Linear(n_feature,n_hidden)# 隐藏层线性输出。self.predict=torch.nn.Linear(n_hidden,n_output)# 输出层线性输出。optimizer=torch.optim.SGD(net.parameters(),lr=0.2)# 传入 net 的所有参数。x=F.relu(self.hidden(x))# 激励函数(隐藏层的线性值)x=self.predict(x)# 输出值。#4.可视化训练过程。原创 2023-08-09 13:04:55 · 102 阅读 · 0 评论