算法——图论——最短路径——Floyd / 传递闭包

目录

 Floyd-Warshall(弗洛伊德)算法

传递闭包

一、试题 算法训练 盾神与离散老师2 


 

 Floyd-Warshall(弗洛伊德)算法

  • 求所有顶点到所有顶点的最短路径问题
  • 弗洛伊德算法(Floyd-Warshall algorithm)是一种用于寻找图中所有顶点对之间最短路径的动态规划算法。
  • 该算法可以处理带有负权边但不含负权环的加权有向图或无向图。
  • 弗洛伊德算法的核心思想是利用三重循环遍历所有顶点,逐步更新每对顶点之间的最短路径的信息。

弗洛伊德算法的示例代码:

import java.util.Arrays;

public class FloydWarshall {

    public static void main(String[] args) {
        int INF = 99999; // 表示无穷大
        int[][] graph = {
            {0, 5, INF, 10},
            {INF, 0, 3, INF},
            {INF, INF, 0, 1},
            {INF, INF, INF, 0}
        };

        floydWarshall(graph);
    }

    public static void floydWarshall(int[][] graph) {
        int V = graph.length;
        int[][] dist = new int[V][V];

        // 初始化距离矩阵为图的邻接矩阵
        for (int i = 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戏拈秃笔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值