目录
一.数据增强
由于训练数据集图片太少所以我们模型的正确率很低,数据增强可以变相增加我们的训练集,
数据增强就是在对训练集增加格式转换,从而每次训练的图片都不一样,测试集则只需做标准化即可
transforms.RandomRotation(45),#随机旋转
transforms.CenterCrop(256),#从中心裁剪[256,256]
transforms.RandomHorizontalFlip(p=0.5),#随机水平旋转,概率p=0.5
transforms.RandomVerticalFlip(p=0.5),#随机垂直旋转,概率p=0.5
transforms.ColorJitter(brightness=0.2,contrast=0.1,saturation=0.1,hue=0.1),#brightness(亮度)contrast(对比度)saturation(饱和度)hue(色调)
transforms.RandomGrayscale(p=0.1),#p的概率转换为灰度图,但任然是三个通道,不过三个通道相同
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])#标准化,设置通用的均值和标准差
data_transforms={
'train':
transforms.Compose([
transforms.Resize([300,300]),
transforms.RandomRotation(45),#随机旋转
transforms.CenterCrop(256),#从中心裁剪[256,256]
transforms.RandomHorizontalFlip(p=0.5),#随机水平旋转,概率p=0.5
transforms.RandomVerticalFlip(p=0.5),#随机垂直旋转,概率p=0.5
transforms.ColorJitter(brightness=0.2,contrast=0.1,saturation=0.1,hue=0.1),#brightness(亮度)contrast(对比度)saturation(饱和度)hue(色调)
transforms.RandomGrayscale(p=0.1),#p的概率转换为灰度图,但任然是三个通道,不过三个通道相同
transforms.ToTensor(),
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])#标准化,设置通用的均值和标准差
]),
'valid':#测试集只用标准化
transforms.Compose([
transforms.Resize([256,256]),
transforms.ToTensor(),
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
])
}
需要注意的是数据增强后我们的训练轮次epoch必须更大这样才能起到变相增加训练集的作用,epoch太小反而会比之前的正确率更低
训练测试结果如下:
二.保存最优模型
我们知道模型的准确率并不会随着训练的轮次一直升高,当训练达到了一定的次数,我们的模型准确率就会开始波动下降,如图
所以我们需要在每一轮训练后都测试一次模型的准确率,比较前后的准确率,在最大准确率的时候通过 torch.save(model,'best_model.pt')保存模型,我们只需要在test()测试函数后面添加几行代码即可实现:
best_acc=0
def test(dataloader,model,loss_fn):
global best_acc
model.eval()
len_data=len(dataloader.dataset)
correct,loss_sum=0,0
num_batch=0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss_sum += loss_fn(pred, y).item()
correct+=(pred.argmax(1)==y).type(torch.float).sum().item()
num_batch+=1
loss_avg=loss_sum/num_batch
accuracy=correct/len_data
print(f'Accuracy:{100 * accuracy}%\nLoss Avg:{loss_avg}')
if accuracy>best_acc:
best_acc=accuracy
# torch.save(model.state_dict(),'best_model.pt')
torch.save(model,'best_model.pt')
代码训练完成后我们将会得到一个best_model.pt文件(后缀pt或pth都行)
三.使用最优模型
我们只需要在创建模型后导入之前的保存的文件即可
model=CNN().to(device)
# model=model.load_state_dict(torch.load('best_model.pt'))
model=torch.load('best_model.pt')#直接加载保存的最优模型
由于我们是直接导入最优模型,所以我们之前代码中的train(),test()方法,data_tranform字典中的‘train’项我们也不需要了,但是food_dataset类的定义必须存在,因为后续我们还要用数据集通过此类经过DataLoader传入模型来预测出食物类别,神经网络类CNN的定义也需要,因为我们是先实现神经网络类的创建再导入的最优模型,代码如下
import os
dire={}
def train_test_file(root,dir):
f_out=open(dir+'.txt','w')
path=os.path.join(root,dir)
for root,directories,files in os.walk(path):
if len(directories)!=0:
dirs=directories
else:
now_dir=root.split('\\')
for file in files:
path=os.path.join(root,file)
f_out.write(path+' '+str(dirs.index(now_dir[-1]))+'\n')
dire[dirs.index(now_dir[-1])]=now_dir[-1]
f_out.close()
root=r'.\food_dataset'
train_dir='train'
test_dir='test'
train_test_file(root,train_dir)
train_test_file(root,test_dir)
import torch
from torch.utils.data import Dataset,DataLoader
import numpy as np
from PIL import Image
from torchvision import transforms
data_transforms={
'valid':#测试集只用标准化
transforms.Compose([
transforms.Resize([256,256]),
transforms.ToTensor(),
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
])
}
class food_dataset(Dataset):#能通过索引的方式返回图片数据和标签结果
def __init__(self,file_path,transform=None):
self.file_path=file_path
self.imgs_paths=[]
self.labels=[]
self.transform=transform
with open(self.file_path) as f:
samples=[x.strip().split(' ') for x in f.readlines()]
for img_path,label in samples:
self.imgs_paths.append(img_path)
self.labels.append(label)
def __len__(self):
return len(self.imgs_paths)
def __getitem__(self, idx):
image=Image.open(self.imgs_paths[idx])
if self.transform:
image=self.transform(image)
label=self.labels[idx]
label=torch.from_numpy(np.array(label,dtype=np.int64))#label也转化为tensor
return image,label
device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
from torch import nn
class CNN(nn.Module):
def __init__(self):
super().__init__()
#nn.Sequential()是将网络层组合在一起,内部不能写函数
self.conv1=nn.Sequential(#1*3*256*256
nn.Conv2d(in_channels=3,#输入通道数
out_channels=8,
kernel_size=5,
stride=1,
padding=2),#1*8*256*256
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)#1*8*128*128
)
self.conv2 = nn.Sequential(
nn.Conv2d(8,16,5,1,2),#1*16*128*128
nn.ReLU(),
nn.Conv2d(16,32,5,1,2),#1*32*128*128
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)##1*32*64*64
)
self.conv3 = nn.Sequential(
nn.Conv2d(32,64,5,1,2),#1*64*64*64
nn.ReLU(),
nn.Conv2d(64, 64, 5, 1, 2),#1*64*64*64
nn.ReLU()
)
# self.flatten=nn.Flatten()
self.out=nn.Linear(64*64*64,20)
def forward(self,x):
x=self.conv1(x)
x=self.conv2(x)
x=self.conv3(x)
x=x.view(x.size(0),-1)
# x=self.flatten(x)
output=self.out(x)
return output
model=CNN().to(device)
# model=model.load_state_dict(torch.load('best_model.pt'))
model=torch.load('best_model.pt', map_location=torch.device('cpu'))#直接加载保存的最优模型
最后我们自己再写一个测试,预测出每个图片是什么食物,测试代码仿照之前的test()方法写即可
然后将真实结果和以讹传讹结果都答打印出来
#预测
model.eval()
res=[]
true_res=[]
with torch.no_grad():
len_data = len(test_loader.dataset)
correct= 0
with torch.no_grad():
for X, y in test_loader:
X, y = X.to(device), y.to(device)
pred = model(X)
b=pred.argmax(1).item()
res.append(dire[pred.argmax(1).item()])
a=y.item()
true_res.append(dire[y.item()])
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
accuracy = correct / len_data
print('预测结果:',res)
print('实际结果:', true_res)
print(f'Accuracy:{100 * accuracy}%')