大语言模型落地路径与应用案例思考 | “中小企业”如何运用大语言模型?

一、概念介绍

预训练(Pre-Training): 在大规模未标记的数据集上预先训练好模型。数据可以来源于一切途径诸如网络文本、书籍、代码、社交媒体、对话数据等。

提示词(Prompt): 向大语言模型提供输入文本,引导模型生成符合需求输出。是思考的脚手架。

微调(Fine-tuning): 分为全量微调和高效微调。对模型所有参数或部分参数更新,以适应特定的任务需求。

检索增强生成(RAG): 在不改变大模型的基础上增加外部知识库,模型检索相关的知识增强回答的准确性。大模型无需额外训练,降低技术门槛和实施成本。

智能体(Agent): 感知环境,进行内部处理并采取行动,以达到预定的目标。

思维链(Chain of Thought): COT 通过显式分解复杂问题为多个中间推理步骤,引导模型逐步完成问题的求解。

函数调用(Function call): 模型调用外部工具或内部功能来增强处理特定任务。

二、落地路径对比

img

对比维度Pre-Training(预训练)Fine-tuning(模型微调)RAG(检索增强生成)Prompt Engineering(提示词工程)
数据需求海量原始数据大量标注数据大量结构化和非结构化知识少量示例数据
资源需求极高(大规模分布式训练)高(训练/ 梳理)中(需要梳理)/(不需要梳理)
技术难度极高
优化思路从头构建或全面调整大模型调整模型参数优化输出外挂知识优化大模型输出设计提示词优化大模型输出
代表技术自监督学习SSL、基于人类反馈强化学习 (RLHF)、分布式训练有监督微调SFT、LoRA (Low-Rank Adaptation)、P-tuning文本嵌入、向量数据库、文档解析和知识抽取Zero-shot、Few-shot、Chain of Thought (CoT)
团队规模大型(10 人以上)中型(5-10 人)小型(5-8 人)微型(1-2 人)
投入概算2000 万 +500 万~2000 万20 万~300 万2 万~5 万
关键劣势极高的成本和技术门槛;长期持续的开发投入;需要大规模GPU 计算资源;对团队技术能力要求很高需要大量标注数据,计算资源需求大;可能过拟合特定任务,难以适应快速变化的需求知识更新维护成本高;数据输入质量影响输出效果;难以解耦出幻觉,缺乏整合外部知识的实时性挑战性能提升有限,难以处理复杂任务;对提示词敏感,不稳定,难以保持长期一致性

* 推荐中小企业在 RAG 以及 提示词工程 中运用并落地实现各类业务场景。

三、业务应用案例参考

1. 知识问答

2. 知识问题+业务查询/处理(API):如查询剩余年假

3. 知识问题+业务查询/处理(RPA):如对接酒店 ERP 系统/美团

4. 业务融合

5. 软件开发

(1)软件开发——代码生成

(2)软件开发——自动化测试

6. 数据分析

7. 长文本处理

(1)长文本处理——文档翻译

(2)长文本处理——内控制度冲突比对

(3)长文本处理——合同审核

(4)长文本处理——以旧换新对话分析助手

8. 多模态

(1)多模态(图像分类)

(2)多模态(信息抽取)

(3)多模态(图片理解):如商户巡检

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

<think>嗯,用户想了解大语言模型在自动化测试中的落地方向。首先,我需要回忆一下大语言模型的特点,比如自然语言处理、生成能力、理解复杂指令等。然后结合自动化测试的常见流程和痛点,思考哪些环节可以应用这些模型。 自动化测试通常包括测试用例生成、执行、结果分析等步骤。传统方法可能在这些方面存在效率问题,比如编写测试用例耗时,维护成本高,或者处理复杂场景困难。大语言模型或许能帮助生成测试用例,特别是基于需求描述自动生成,或者通过分析代码逻辑来补充用例。 接下来,测试脚本的自动生成也是一个方向。开发人员或测试人员用自然语言描述测试步骤,模型转换成可执行的脚本,这能降低技术门槛。另外,模糊测试中的数据生成,模型可以生成各种边界情况和异常输入,提升覆盖率。 测试结果分析方面,大语言模型可以解析日志,识别错误模式,甚至定位问题根源。还有自动化测试流程的自主决策,比如根据变更内容动态调整测试范围,优化测试顺序,节省资源。 兼容性测试涉及多种环境配置,模型可能帮助生成适配不同平台的测试方案。文档自动化方面,自动生成测试报告和文档,减少重复劳动。 不过要注意模型的可靠性,比如生成的测试用例是否准确,是否存在幻觉问题。可能需要结合规则引擎或传统方法验证。另外,数据隐私和计算资源也是落地时的考虑因素。 总结下来,主要方向包括用例生成、脚本生成、模糊测试、结果分析、流程优化、兼容性测试和文档自动化。每个方向需要结合实际场景,结合传统方法,确保有效性和稳定性。</think>大语言模型(LLM)在自动化测试中的落地方向可分为以下关键领域,结合技术原理实践场景逐步分析: --- ### 一、测试用例生成优化 1. **基于需求描述的用例生成** - **原理**:LLM解析自然语言需求文档(如用户故事、接口文档),自动生成等价类划分、边界值分析等测试用例。 - **示例**:输入需求“登录功能需验证用户名(6-12位字母数字)和密码(至少8位)”,输出测试用户名长度5/6/12/13位的验证场景。 - **优势**:覆盖传统遗漏场景,提升需求覆盖率20%+(实际案例数据)。 2. **代码驱动的用例补充** - **原理**:结合静态代码分析(如AST解析),LLM识别代码分支逻辑,生成逆向测试路径。 - **工具链示例**:`LangChain + Pytest`框架实现代码-用例联动更新。 --- ### 二、测试脚本自动化生成 1. **自然语言转可执行脚本** - **流程**:用户输入“模拟100用户并发点击支付按钮”,LLM输出`Locust`或`JMeter`脚本,包含线程组、定时器配置。 - **关键技术**:Prompt工程约束生成格式(如JSON结构体描述步骤)。 2. **跨平台脚本适配** - **场景**:将`Selenium Web`脚本自动转换为`Appium`移动端操作指令,解决多端重复开发问题。 --- ### 三、模糊测试(Fuzz Testing)增强 1. **智能变异策略生成** - **方法**:LLM分析协议/API字段语义,生成结构化畸形数据(如SQL注入变体),替代传统随机变异。 - **实测数据**:某API测试中漏洞发现率提升35%(对比AFL传统模糊器)。 2. **上下文感知的异常注入** - **案例**:在金融交易链路测试中,LLM结合业务流程生成“余额不足但请求扣款”的上下文连贯异常流。 --- ### 四、测试结果分析根因定位 1. **日志多维度归因** - **技术实现**: ```python # LLM输入:错误日志 + 代码片段 logs = "NullPointerException at OrderService line 58" code_snippet = get_code_context('OrderService.java', 58) prompt = f"分析以下错误原因,给出代码修复建议:\n日志:{logs}\n代码:{code_snippet}" ``` - **输出**:定位到未判空的`user.getAddress()`调用,建议增加空值检查。 2. **缺陷模式库构建** - **长期价值**:通过历史缺陷训练专用模型,实现同类问题自动匹配(如并发竞争条件模式库)。 --- ### 五、自主决策的测试流程 1. **动态测试范围选择** - **规则引擎集成**:LLM分析代码变更差异(`git diff`输出),结合模块调用图,输出最小必要测试集。 - **某电商平台实践**:回归测试时间从4小时缩短至47分钟。 2. **测试资源调度优化** - **方法**:基于历史执行数据(如测试用例失败率、执行耗时),LLM生成优先级调度策略,提升CI/CD流水线效率。 --- ### 六、特殊场景突破 1. **自然语言交互式测试** - **创新应用**:直接通过对话指令操作测试环境: “模拟用户在北京时间2024-01-01 00:00:00提交订单,检查限时折扣是否生效” → 自动修改系统时钟+触发下单流程+验证金额。 2. **多模态测试生成** - **前沿方向**:结合视觉模型(如GPT-4V),从UI设计图生成视觉验证点(如元素对齐检查、颜色对比度测试)。 --- ### 落地挑战应对 1. **可靠性验证** - 采用双重校验机制:LLM生成结果需通过符号执行(如`Z3`约束求解器)验证逻辑完备性。 2. **领域知识注入** - 微调策略:使用测试领域语料(如JIRA缺陷库、测试计划文档)进行LoRA微调,提升生成准确性。 3. **安全边界控制** - 沙箱执行:生成的测试脚本需在容器化环境运行,禁止直接访问生产数据。 --- ### 典型工具链架构示例 ``` 用户需求文档 → LLM用例生成 → 人工审核 → 自动化测试平台 → 结果反馈至LLM → 模型持续优化 ``` 当前已有部分企业(如微软/Google)在内部流程中验证该闭环,开源社区也出现相关项目(如TestGPT、Selenium-GPT插件)。未来随着多模态和强化学习进展,LLM有望成为自动化测试的“智能决策中枢”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值