一、概念介绍
预训练(Pre-Training): 在大规模未标记的数据集上预先训练好模型。数据可以来源于一切途径诸如网络文本、书籍、代码、社交媒体、对话数据等。
提示词(Prompt): 向大语言模型提供输入文本,引导模型生成符合需求输出。是思考的脚手架。
微调(Fine-tuning): 分为全量微调和高效微调。对模型所有参数或部分参数更新,以适应特定的任务需求。
检索增强生成(RAG): 在不改变大模型的基础上增加外部知识库,模型检索相关的知识增强回答的准确性。大模型无需额外训练,降低技术门槛和实施成本。
智能体(Agent): 感知环境,进行内部处理并采取行动,以达到预定的目标。
思维链(Chain of Thought): COT 通过显式分解复杂问题为多个中间推理步骤,引导模型逐步完成问题的求解。
函数调用(Function call): 模型调用外部工具或内部功能来增强处理特定任务。
二、落地路径对比
对比维度 | Pre-Training(预训练) | Fine-tuning(模型微调) | RAG(检索增强生成) | Prompt Engineering(提示词工程) |
---|---|---|---|---|
数据需求 | 海量原始数据 | 大量标注数据 | 大量结构化和非结构化知识 | 少量示例数据 |
资源需求 | 极高(大规模分布式训练) | 高(训练/ 梳理) | 中(需要梳理) | /(不需要梳理) |
技术难度 | 极高 | 高 | 中 | 低 |
优化思路 | 从头构建或全面调整大模型 | 调整模型参数优化输出 | 外挂知识优化大模型输出 | 设计提示词优化大模型输出 |
代表技术 | 自监督学习SSL、基于人类反馈强化学习 (RLHF)、分布式训练 | 有监督微调SFT、LoRA (Low-Rank Adaptation)、P-tuning | 文本嵌入、向量数据库、文档解析和知识抽取 | Zero-shot、Few-shot、Chain of Thought (CoT) |
团队规模 | 大型(10 人以上) | 中型(5-10 人) | 小型(5-8 人) | 微型(1-2 人) |
投入概算 | 2000 万 + | 500 万~2000 万 | 20 万~300 万 | 2 万~5 万 |
关键劣势 | 极高的成本和技术门槛;长期持续的开发投入;需要大规模GPU 计算资源;对团队技术能力要求很高 | 需要大量标注数据,计算资源需求大;可能过拟合特定任务,难以适应快速变化的需求 | 知识更新维护成本高;数据输入质量影响输出效果;难以解耦出幻觉,缺乏整合外部知识的实时性挑战 | 性能提升有限,难以处理复杂任务;对提示词敏感,不稳定,难以保持长期一致性 |
* 推荐中小企业在 RAG 以及 提示词工程 中运用并落地实现各类业务场景。
三、业务应用案例参考
1. 知识问答
2. 知识问题+业务查询/处理(API):如查询剩余年假
3. 知识问题+业务查询/处理(RPA):如对接酒店 ERP 系统/美团
4. 业务融合
5. 软件开发
(1)软件开发——代码生成
(2)软件开发——自动化测试
6. 数据分析
7. 长文本处理
(1)长文本处理——文档翻译
(2)长文本处理——内控制度冲突比对
(3)长文本处理——合同审核
(4)长文本处理——以旧换新对话分析助手
8. 多模态
(1)多模态(图像分类)
(2)多模态(信息抽取)
(3)多模态(图片理解):如商户巡检
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!