你是否遇到过这样的情况:向智能助手请教一个具体问题,它要么答非所问,要么东拉西扯说些不相关的内容?比如你问“咱们公司新推出的这款产品保修政策是什么”,它可能给你普及一堆行业通用的保修常识,偏偏就是说不到你想知道的点上。这并非智能助手有意敷衍,而是它的“知识库”里没有存储你公司的具体信息。不过别担心,现在有一种叫RAG的技术,专门用来弥补智能助手的这个缺陷。今天咱们就用最通俗易懂的语言,把RAG是什么、如何工作讲清楚,保证你看完之后能轻松讲给别人听。
一、RAG究竟是什么?
RAG这三个字母,全称是Retrieval - Augmented Generation,翻译成中文就是“检索增强生成”。听起来挺高深,其实拆开来理解就很简单了。
“生成”这个概念我们都不陌生,就是大模型具备的说话、写东西的能力,比如让它写一份工作总结、解释一个专业术语,这些都属于生成功能。但前面也提到了,大模型的知识是有局限性的,如果你问它“今年公司新上市的产品有哪些特点”,要是它没学习过这部分内容,很可能就会胡乱猜测。
而“检索增强”,就好比给大模型配备了一个“随身小助手”。当你提出问题时,这个“小助手”会先到专门的知识库中查找相关资料,挑选出有用的信息交给大模型,大模型再依据这些资料来回答你的问题。这样一来,大模型给出的答案就有了依据,靠谱多了。
举个生活中的例子,你问“下周三我们城市的天气怎么样”,普通的大模型可能还依赖着上周的天气数据,回答很难准确。但带有RAG的大模型,其“小助手”会先去最新的气象数据库里查询,然后大模型根据查到的信息告诉你具体的气温、降水情况,准确性就高多了。而且,不只是天气查询,像查询股票的实时行情、了解最新的赛事结果等,RAG都能发挥类似的作用,让大模型的回答紧跟最新动态。
二、RAG是如何工作的?
RAG的工作流程,和我们平时查资料写报告很相似,分为三个步骤,一步都不能少。
(一)搭建“资料库”——知识库构建
就像写报告前要先搜集一堆资料一样,RAG工作前也得有个“资料库”,也就是知识库。
这个知识库里面的内容可丰富了,公司的内部文件、行业的研究报告、网上的新闻资讯、甚至是一本本厚重的书籍,都能收纳进去。不过这些资料不能杂乱无章地堆放,需要先进行处理:把长文章拆分成短段落,就像把一篇论文分成引言、正文、结论那样,方便后面快速找到需要的部分。
比如,一个用于金融咨询的RAG系统,它的知识库可能包含各种金融法规、过往的投资案例分析、金融专家的解读文章等。
(二)精准“找资料”——信息检索
当你把问题抛给RAG后,它就开始“找资料”了,这一步类似你在网上用关键词搜索,但要高级得多。
首先,系统会“理解”你的问题,找出其中的关键信息。比如你问“老年人血压升到160该怎么办”,它能抓住“老年人”“血压160”这两个关键要点。
然后,它会带着这些关键要点去知识库“搜寻”。不过它不是依靠文字完全一致来搜索,而是运用“向量相似度计算”技术。简单来说,就是把你的问题和库里的资料都转化成一串数字(就像给每个内容编了一个独特的密码),然后看哪串数字和问题的数字最相似,最相似的那部分资料就是最相关的。
还是以“老年人血压升到160该怎么办”为例,系统会在医疗知识库中找到关于老年人高血压应急处理方法的资料片段,像如何调整饮食、是否需要立即服药、何时该就医等。
(三)整合资料“说清楚”——生成回答
找到合适的资料后,RAG会把这些资料交给大模型,让大模型将资料整理成通顺的话语来回答你。
大模型会把这些零散的资料片段整合起来,用我们能听懂的语言表达出来,而且不会随意添加内容。比如针对“老年人血压升到160该怎么办”,大模型会根据找到的资料,告诉你先让老人休息,监测血压变化,若伴有头晕等不适要及时服用降压药并就医,同时会说明这些方法来自哪些医学文献,让你心里有数。
三、RAG有哪些优势?
RAG能受到青睐,可不是没有原因的,它的优点非常突出。
第一,让大模型更“靠谱”。有了知识库作为支撑,大模型不会再胡乱编造内容,说的每句话都能在资料中找到依据,大大降低了“说假话”的概率。
第二,让大模型“紧跟时代”。知识库可以随时添加新资料,今天有新的行业标准出台,明天就能放进库里,RAG马上就能用新的行业标准来回答问题,无需费力重新训练大模型。要知道,训练大模型既耗费资金又耗费时间,RAG这种方式可节省了不少成本和精力。
第三,能“按需定制”。不同的场景可以搭配不同的知识库,企业用内部资料搭建知识库,RAG就能回答员工关于公司流程的问题;科研人员用实验数据和文献做知识库,RAG就能帮助他们分析实验结果、查找相关研究。
四、总结一下
看到这里,你肯定对RAG了如指掌了。说白了,RAG就是给大模型安装了一个“辅助工具”,让它回答问题时有资料可查,既保证了答案的准确性,又能跟上信息更新的节奏,还能根据不同需求提供定制化服务。
现在RAG已经在很多领域得到了应用:电商客服用它快速准确地解答客户关于商品的疑问,医生用它查询病例和医学研究资料,就连设计师找灵感时也能靠它查找相关设计案例和趋势。
随着技术的不断成熟,RAG一定会越来越好用,让大模型更能理解我们的需求,帮助我们解决更多实际问题。要是以后再有人提起RAG,你就可以自信地跟他们讲解,这东西其实一点也不复杂,看完这篇文章,咱们都能说明白!
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!