【深度好文】AI Agent入门:从工具到智能体的革命性转变,附技术对比与未来展望(值得收藏)

想象一下,你拥有一位学富五车的挚友,世间书籍皆在其阅读范围之内,几乎任何知识性问题,都能从他那里得到即时解答。然而,他有个特点:只针对你提出的问题作答,从不会主动提供更多信息。这,便是我们此前介绍过的大语言模型(LLM)。

现在,再设想你聘请了一位“全能超级助手”。你无需向他详述每一个步骤,仅需告知他一个目标,比如:“为我规划一场下周五开始、为期三天两夜、预算在5000元以内的上海之旅。”这位助手便会自行行动起来:查询天气状况、了解机票和酒店价格、筛选合适的景点、规划行程路线,甚至还会将最终结果整理成一份精美的表格发送给你。这个能够自主理解目标、规划行动步骤、运用各类工具,并执行任务的超级助手,就是我们即将深入介绍的AI Agent。
请添加图片描述

什么是Agent?

在人工智能领域,Agent指的是一套能够感知所处环境、自主做出决策并执行相应动作,以达成特定目标或完成特定任务的应用实体。我们可以将其拆解为三个关键组成部分:

  1. 大脑(思考与规划):它能够理解你给出的复杂指令,就像“规划旅行”这样的任务,并且将其拆解为一系列具有可操作性的小步骤,比如先查询机票,接着预订酒店等等。
  2. 工具使用(手脚与资源):它可不只是会“思考”,更能够付诸“行动”。它能够调用各种各样的API(应用程序接口),就如同我们使用现实中的工具一样,例如调用搜索引擎来查询信息、调用计算器进行算账、调用地图服务来查询路线、调用邮件系统来发送邮件。
  3. 记忆系统(演进与学习):它具备记住与你对话上下文的能力,同时还能从过往的行动结果中汲取经验,借助反思机制不断优化自身的决策流程,以便在后续的任务中表现得更加出色。

这三个部分相互协作、协同工作,共同构成了一个完整的“感知 - 推理 - 决策 - 执行 - 反馈”循环,其中:

  • 感知(Perception):负责接收输入信息,这些信息既可以是用户以自然语言形式输入的内容,也可以是通过各类传感器获取的环境信息。
  • 推理(Reasoning):综合考虑上下文信息以及环境感知所获取的信息,对输入数据展开深入分析,并据此规划出任务的执行路径。
  • 决策(Decision Making):依据推理得出的结果,从众多选项中挑选出最为合适的工具或操作方案。
  • 执行(Action Execution):通过调用API、数据库或者计算模块等,切实完成相应的任务。
  • 反馈(Feedback):对执行结果进行全面评估,并依据评估结果对后续的决策过程进行优化调整。

简单来讲,Agent = 大语言模型(作为认知核心) + 任务规划(体现推理能力) + 工具使用(代表执行能力) + 记忆系统(实现持续学习) + 反思机制(助力自我优化)。前面三个组件构成了基础智能体,而后两个要素则是实现高效、可靠智能体的关键升级部分。

为了更清晰地帮助大家理解Agent,我们来进行四组对比分析。

对比1:AI Agent vs. 大型语言模型(LLM)——“实干家”与“博学者”

LLM是一个极为强大的文本生成器,其工作原理类似于词语接龙的魔法。它依据你输入的内容以及自身庞大的知识库,预测并生成最有可能出现的下一个词语,从而组织出流畅的回答内容。它的核心功能在于对话交流与文本生成。

Agent则是一个专注于任务执行的角色。在其内部,通常会包含一个LLM作为“大脑”,用来理解所面临的任务并规划执行步骤。但更为关键的是,它能够驱动各种工具去实际开展行动。

对比维度LLMAI Agent
能力边界文本生成任务执行,可调用工具进行实际操作
行为方式被动响应主动规划
时效性依赖静态知识库能够实现动态实时更新
典型场景代码编写、诗歌创作等电商运营、旅行规划等

总结来说,LLM代表的是静态的知识储备,而Agent则象征着动态的行动实践。LLM如同一个孤立的“大脑”,而AI Agent则像是一个具备“大脑”,同时还有“手”有“脚”,能够切实行动的个体。

对比2:AI Agent vs. 大型语言模型 + 函数调用(LLM + FC)——“完整计划”与“一次指令”

Function Calling(FC)是一项让LLM学会使用单个工具的技术。例如,你可以让大模型“调用计算器功能来计算(123 + 456) * 789的结果”。LLM + FC模式通常是单次触发的,需要用户给出非常明确、具体的指令,模型在判断后调用某一个工具,完成一次调用并返回结果,整个任务便宣告结束。

Agent则是多步串联、连贯执行的。它能够自主规划出一连串的行动步骤,在执行过程中可能会涉及循环操作、条件判断,甚至多次尝试不同的方法。

比如说:你仅仅需要对Agent说“帮我规划去上海的旅行”。Agent便会自行做出一系列决策:首先搜索机票信息 -> 若发现机票价格过高,便重新搜索火车票信息 -> 计算两者差价 -> 利用节省下来的费用升级酒店标准 -> 最终将完整的预算方案呈现给你。这一系列操作都无需你一步一步地详细指挥。

对比维度LLM + FCAI Agent
执行方式单步调用:指令→调用一次工具→返回结果多步自主:可连续调用多个工具,反复尝试直至完成任务
有无规划无,直接响应指令有,会先思考“如何完成任务”
错误处理无纠错机制会评估执行结果,若出现错误便自动重试
技术支持主要依赖工具接口适配依靠动态任务调度算法

总结而言,LLM + FC只是对单个指令做出响应,而Agent则像是在管理一个完整的项目。LLM + FC可以看作是“会使用工具的答题者”,而AI Agent则是“具备规划能力、能够自我纠错,并且会坚持努力直至任务成功完成的执行者”。

对比3:AI Agent vs. 工作流(Workflow)——“灵活大脑”与“固定流水线”

工作流就像是一条预先设定好的、自动化的任务处理流水线。Workflow中的任务步骤都是固定且明确的,如果事件A发生,就会按照设定执行任务B,接着执行任务C。它的执行效率非常高,适用于那些能够轻松、清晰地被分解为固定子任务的场景。

Agent则展现出了极高的灵活性与智能性。它没有固定不变的行动剧本,而是根据当前所处的实际情况以及既定目标,实时地规划出最为合适的行动路径。

对比维度WorkflowAI Agent
定义通过预定义流程编排LLM和工具的系统LLM动态决定自己的处理过程和工具使用的系统
适用范围适用于可预测和能够明确界定解决步骤的问题更适合处理无法预先定义解决步骤的开放性问题
优势具有稳定性、可靠性和可预测性能够有效解决没有固定流程的开放性问题,灵活性极强
劣势灵活性欠佳,难以处理流程之外的异常情况或开放性问题计算成本相对较高,问题解决的成功率还有进一步提升的空间

总结来看,Workflow就像是按照固定程序运行的自动化脚本,而Agent则是拥有自主思考能力的智能个体。Workflow如同流水线上的工人,严格按照固定工序进行操作,而AI Agent则像是项目经理,能够依据项目的实际进展情况灵活调整执行方案。

对比4:AI Agent vs. Agentic AI——“工具型个体”与“系统型生态”

AI Agent通常指的是单个的、具备独立完成任务能力的实体,也就是我们在全文中一直讨论的那个“全能助手”。

Agentic AI(智能体化AI)代表的则是一种架构思想或者系统设计方法。它描述的是在构建AI应用时,采用“以智能体为中心”的设计范式。这种范式的核心要点在于让AI具备主动性以及连贯的执行能力,而不再仅仅局限于被动地响应外界指令。在Agentic AI体系中,多个Agent相互协作、各自承担特定职责,共同努力完成更为宏大、复杂的目标,它代表了AI应用在前沿领域的发展推进方向。

对比维度AI AgentAgentic AI
本质一个具体的“实体”一种“行为模式”或“设计理念”
类比一个“员工”一整套工作流程和企业文化,强调员工的主动性和协作性
核心单个实体所具备的能力(感知、推理、行动)多个实体之间的协作关系、流程架构和能动性

总结来讲,Agent是任务执行的基础单元,而Agentic AI则是构建复杂智慧体系的理念。Agentic AI可以被视为一种“道”,是一种哲学思想和架构设计理念,而AI Agent则是实现这种哲学的具体“器”,也就是具体的工具和构建模块。

随着相关技术框架逐渐初步成型,以及政策方面的大力支持,AI Agent在未来几年的发展路径将会变得愈发清晰:

  1. 从“辅助工具”到“业务决策”:AI Agent将逐步实现角色转变,从承担一些重复性的基础工作,比如自动化的流程审批、智能客服等,深入渗透到核心业务流程之中,进而辅助甚至直接参与到业务决策环节。
  2. “智能体即服务”成为趋势:在未来,预计会涌现出更多平台化的智能体服务。企业通过直接调用API或者订阅相关服务的方式,就能轻松将AI Agent的能力集成到自身的业务流程当中,这将极大地降低企业使用AI Agent的技术门槛。
  3. 渗透率持续提升:国务院印发的《关于深入实施“人工智能 +”行动的意见》明确提出,到2030年,新一代智能终端、智能体等应用的普及率要超过90%。这一目标意味着,人工智能将不再仅仅是一种可有可无的“可选项”,而是会成为未来社会正常运行所依赖的“基础设施”。到2030年,如果缺少AI的支持,就如同在当今社会遭遇断水、断电、断网一样,将会严重影响基本的生产生活秩序,甚至可能成为一种让人难以承受的“数字断供”局面。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值