在 2025 年,新质生产力与人工智能的浪潮席卷而来,“两会” 多次着重强调 AI 的关键意义。尤其是在 DeepSeek 等国产 AI 大语言模型的强力推动下,政府机构与企业纷纷积极投身,紧锣密鼓地部署 AI 大模型,力求顺应时代发展的汹涌需求。市场调研数据清晰地显示,超过 40% 的企业正将重点资金投入到 AI 大模型、应用软件及相关服务领域;并且,在未来三年的时间跨度里,预估超过 60% 的企业对 AI 的投资增长幅度将处于 10%-30% 之间。然而,人工智能产品与技术的复杂程度极高,这使得政府和企业在实际操作中面临诸多棘手难题:该如何精准投入资金?怎样寻觅契合自身业务的发展方向?怎样切实落地具有高价值的 AI 大模型应用场景?针对这些问题,我们将通过一系列深入的研究分析,层层剖析,共同探索 AI 大模型在政府与企业端的应用落地之道。
一、为什么企业纷纷接入 AI 大模型?
AI大模型的企业价值主要体现在以下四个方面:
1、工作效率提升
利用AI大模型提供的办公软件、流程管理软件、开发设计软件来提高员工工作效率、缩短重复和复杂工作时间
2、 知识数据洞察
利用AI大模型对用户信息、消费习惯、兴趣爱好等信息进行综合分析,更好地总结、对比、预测用户数据变化和趋势
3、 生产工具赋能
利用 AI 大模型为设计、编程、制造等工作人员的生产工具赋能,自动生成并创新产品内容,加快产品的迭代周期和创新速度
4、 管理方式变革
利用 AI 大模型主动分析外部市场变化和内部经营数据,进行合规管理、风险预测、潜在效益分析和建模
采用AI大模型给企业带来的价值
二、目前企业应用AI 大模型的情况如何
现阶段,AI大模型的企业应用仍是以处于探索阶段,表现为试点项目的扩大和应用场景的积极创新探索。
1 、加码投资,企业扩大试点
IDC全球调研数据显示,37.7%的受访企业正在重点投资AI大模型,并预计在未来三年内引入AI软件及相关培训和服务。此外,64%的中国企业预计其对AI的投资将增长10-30%
2 、拓展试点,积极探索
IDC调研数据显示,在过去一年里,全球范围内平均对AI大模型项目进行了34次概念验证(POC)测试,这一数字远超其他IT项目,且企业对AI大模型测试的满意度高达70%
3 、拥抱通用大模型,聚焦应用创新
领先的大模型厂商已经成功构建了从零到一的端到端解决方案,极大地减少了重复开发的必要性。企业可以借助这些既有模型和服务,避免“重新造轮子”的投入,从而将更多资源和精力集中在业务创新上,加速智能化转型的步伐。
4、AI Agent智能体元年,百花齐放百家争鸣
2025年被称为“智能体元年”。随着Manus智能体的发布以及大模型应用成本门槛的极大降低,加速了智能体的落地。AI Agent智能体的应用服务形态与特征,使其成为AI 大模型落地应用的良好载体。可预见的,2025年将是智能体应用迸发的一年,千行百业将迎来创新性智能体标杆服务场景的诞生。
三、现阶段企业落地 AI 大模型的痛点
尽管前景广阔,企业在实际操作中仍面临挑战,如投资收益不明朗、应用场景适配度低及模型部署繁杂、可信度等问题。
1、「投资收益不明朗」
数据显示89%的高管认为模型训练成本高,81%的高管认为模型推理成本高,同时机会成本与预期回报难以估量也是企业在落地 AI 大模型时遇到的第一道难题
2、「AI 大模型与应用场景难以适配」
在应用场景适配度方面,87%的企业认为模型精度还不能满足落地要求,无法衡量具体效果;在模型的选择方面,62%的企业认为市场上模型选择太多,缺乏选择的标准和评判依据,同时通用模型能力与专业需求不匹配、模型上线性能难以保证等问题是企业所面临的第二道难题
3、「模型部署落地细节较多难以执行」
由于模型优化方式、路径、调整程度选择多样且企业缺少足够经验和技术支撑,导致该过程复杂且耗时,使得经验欠缺的企业在执行过程中面临众多困难,数据显示59%的企业认为模型调优是大模型开发中投入最多且挑战更大的工作之一。同时企业在实施大模型的落地过程中,涉及从开发到部署的多个复杂步骤,包括但不限于二次训练、数据管理、参数优化、效果精细调整、Prompt工程、RAG(检索增强生成)、生态插件集成、模型性能评估、模型剪枝与蒸馏、模型维护管理以及算力资源调度等十余个关键环节对于缺乏经验的企业来说,犹如一座大山难以攻克。
四、 AI 大模型应用场景中哪些较为成熟
企业落地AI大模型的根本目标是新价值增长。根据市场调研显示,AI大模型应用场景在不同行业中呈现出广泛的应用潜力,涵盖从供应链管理到智能客服等多个领域。
AI 应用场景分析按照落地成熟度分,可分为 L1~L4四个级别(越往后越成熟),个级别的代表性应用场景有:
L1:供应链管理(工业领域)、财富管理(金融领域)、学生培养(教育领域)、智慧门店(零售领域)、视频创作(娱乐领域)、药物研发(医药领域)……
L2: 研报分析(金融领域)、营销文案生成(互联网领域)、销量预测(零售领域)、医生助手(医药领域)……
L3: 客群分析(零售领域)、智能客服(互联网领域)、作业批改(教育领域)、智能分诊(医药领域)、数字人(互联网领域)……
L4: 未来可期、敬请期待
总结
随着AI技术的发展,企业逐渐认识到AI大模型的价值,并开始积极探索其在各个业务领域的应用。虽然在实践中遇到了一些困难,但随着技术的进步和经验的积累,这些问题正在逐步得到解决。展望未来,AI大模型将在更多行业中发挥重要作用,助力企业实现更高的效能和创新。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!