【机器学习】对数几率回归

本文探讨了在在线性模型中加入激活函数的应用,涉及信息论的基本概念如自信息、信息熵和相对熵(KL散度),并介绍了如何通过极大似然估计和优化方法(如梯度下降和牛顿法)调整模型。重点讲解了交叉熵在机器学习中的角色,以及线性模型与sigmoid函数在输出规范化中的作用。

算法原理

在线性模型的基础上增加一个激活函数用于映射。
在这里插入图片描述

知识预备

信息论

用概率论和随机过程为基本研究工具,研究广义通信系统的整个过程。常见的有无损压缩、有数据压缩等。

  • 自信息:I(X)=−log⁡bp(x)I(X)=-\log_bp(x)I(X)=logbp(x) 在概率是0.5的时候最没法确认到底数值是多少

  • 信息熵(自信息的期望):信息熵越大越不确定,用数学的方式量化不确定性。

  • 相对熵(KL散度):度量两个分布的差异以及典型场景用来度量理想分布p(x)p(x)p(x)最想求解的分布)和模拟分布q(x)q(x)q(x)之间的差异。计算公式如下:

    DKL(p∣∣q)=∑xp(x)log⁡b(p(x)q(x))=∑xp(x)(log⁡bp(x)−log⁡bq(x))=∑xp(x)log⁡bp(x)−∑xp(x)log⁡bq(x)\begin{aligned}D_{KL}(p||q)&=\sum_xp(x)\log_b(\frac{p(x)}{q(x)})\\&=\sum_xp(x)\left(\log_bp(x)-\log_bq(x)\right)\\&=\sum_xp(x)\log_bp(x)-\sum_xp(x)\log_bq(x)\end{aligned}DKL(p∣∣q)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值