算法原理
在线性模型的基础上增加一个激活函数用于映射。
知识预备
信息论
用概率论和随机过程为基本研究工具,研究广义通信系统的整个过程。常见的有无损压缩、有数据压缩等。
-
自信息:I(X)=−logbp(x)I(X)=-\log_bp(x)I(X)=−logbp(x) 在概率是0.5的时候最没法确认到底数值是多少
-
信息熵(自信息的期望):信息熵越大越不确定,用数学的方式量化不确定性。
-
相对熵(KL散度):度量两个分布的差异以及典型场景用来度量理想分布p(x)p(x)p(x)(最想求解的分布)和模拟分布q(x)q(x)q(x)之间的差异。计算公式如下:
DKL(p∣∣q)=∑xp(x)logb(p(x)q(x))=∑xp(x)(logbp(x)−logbq(x))=∑xp(x)logbp(x)−∑xp(x)logbq(x)\begin{aligned}D_{KL}(p||q)&=\sum_xp(x)\log_b(\frac{p(x)}{q(x)})\\&=\sum_xp(x)\left(\log_bp(x)-\log_bq(x)\right)\\&=\sum_xp(x)\log_bp(x)-\sum_xp(x)\log_bq(x)\end{aligned}DKL(p∣∣q)