【拓扑空间】示例及详解2

设A是X的一个子集,x\in A

内点、邻域:\exists open \ set\ U \subseteq A,x\in U \subseteq A,则x是A的一个内点,A是x的一个领域

内部:A的所有的内点的集合称为A的内部,记A^o

例1

证明:A \subseteq B\Rightarrow A^o\subseteq B^o

Proof:

\forall x \in A^o,\exists\ open \ set \ U \subseteq A,x\in U \subseteq A \subseteq B\Rightarrow A^o \subseteq B^o

例2

证明:A^o是包含在A中的所有开集的并集,因此是包含在A中的最大开集

Proof:

let\ \left \{ U_i:i\in I \right \} is \ family \ of \ all \ open\ subset\ of\ A

1.\forall open\ set\ U_i\subseteq A

\forall x\in U_i,x\in U_i\subseteq A\Rightarrow x\in A^o\Rightarrow U_i\subseteq A^o\Rightarrow \cup_{i\in I}U_i \subseteq A^o

2.\forall x \in A^o\Rightarrow \exists open\ set\ U_i\subseteq A,x\in U_i\Rightarrow A^o \subseteq \cup_{i\in I}U_i

in\ sum,A^o=\cup_{i\in I} U_i,and \ A^o\ is \ the \ best \ open\ subset \ of\ A

例3

证明:A^o=A\Leftrightarrow A \ is \ open \ set

Proof:

let\ \left \{ U_i:i\in I \right \} is \ family \ of \ all \ open\ subset\ of\ A

1.

A=A^o=\cup_{i\in I} U_i\Rightarrow A \ is \ open

2.

A \ is \ open \Rightarrow \forall x\in A,\exists open\ set\ A,x\in A \subseteq A\Rightarrow A\subseteq A^o

\forall x \in A^o,x\in A \Rightarrow A^o \subseteq A

so,A^o=A

In \ sum,A^o=A\Leftrightarrow A \ is \ open \ set

例4

证明:A^o\cap B^o=(A\cap B)^o

Proof:

1.

\forall x\in A^o\cap B^o,\exists open\ set\ u_1\ and\ u_2,x\in u_1\subseteq A ,x\in u_2\subseteq B,u_1\cap u_2 \neq \varnothing

so \ x\in u_1\cap u_2 \subseteq A\cap B,u_1\cap u_2\ is \ open\Rightarrow x\in (A\cap B)^o

therefore,A^o\cap B^o \subseteq (A\cap B)^o

2.

A\cap B \subseteq A\Rightarrow (A\cap B)^o \subseteq A^o

A\cap B \subseteq B\Rightarrow (A\cap B)^o \subseteq B^o

therefore,(A\cap B)^o \subseteq A^o \cap B^o

In \ sum,A^o\cap B^o=(A\cap B)^o

Another \ proof \ of\ A^o\cap B^o \subseteq (A\cap B)^o:

A^o\cap B^o \subseteq A\cap B\Rightarrow \left (A^o\cap B^o \right ) ^o\subseteq \left (A\cap B \right )^o

A^o \ is \ open ,B^o \ is \ open \Rightarrow A^o\cap B^o \ is \ open\Rightarrow \left (A^o\cap B^o \right )^o=A^o\cap B^o

therefore, \left (A^o\cap B^o \right )=\left (A^o\cap B^o \right ) ^o\subseteq \left (A\cap B \right )^o

例5

证明:A^o\cup B^o\subset (A\cup B)^o

Proof:

A^o \ is \ open,B^o \ is \ open\Rightarrow A^o\cup B^o \ is \ open\Rightarrow A^o\cup B^o=\left ( A^o\cup B^o \right ) ^o

and\ A^o\cup B^o\subset A\cup B \Rightarrow \left (A^o\cup B^o \right )^o\subset \left (A\cup B \right )^o

therefore,A^o\cup B^o\subset (A\cup B)^o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值