
杂
文章平均质量分 64
F_D_Z
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【解决办法】Git报错error: src refspec main does not match any.
在Git推送时遇到"error: src refspec main does not match any"错误,原因是本地分支名称(master)与远程分支名称(main)不匹配。解决方法:通过git checkout -b main创建并切换到main分支,然后执行推送。如需删除旧master分支,可使用git branch -D master。此问题通常由Git版本变更导致的分支命名差异引起。原创 2025-07-19 12:28:13 · 1444 阅读 · 0 评论 -
数据集相关类代码回顾理解 | utils.make_grid\list comprehension\np.transpose
使用 NumPy 库的 transpose 函数来改变数组的维度顺序,例如将图像的维度从(C,H,W)转换为(H,W,C)。经常需要改变图像维度是因为许多深度学习库(如 PyTorch 和 TensorFlow)期望图像数据的维度顺序为 (C,H,W),而许多图像处理库(如 OpenCV 和 PIL)则使用 (H,W,C) 作为默认的维度顺序。x_grid:四维图像张量,形状为 (N, C, H, W),其中 N图像数量,C通道数,H 高度,W宽度。nrow=4:网格中的行数为4,默认值为 8。原创 2025-07-17 16:17:44 · 292 阅读 · 0 评论 -
【EM算法】三硬币模型
本文介绍了EM算法在三硬币模型中的应用。模型通过掷硬币A决定选择硬币B或C,观测10次结果后估计参数。由于存在隐变量,传统极大似然估计无法解析求解。EM算法通过E步(计算期望)和M步(参数估计)迭代求解,示例显示初值取π=0.5时收敛至π=0.5,p=0.6,q=0.6,但算法对初值敏感,不同初值可能导致不同结果。该案例展示了EM算法处理含隐变量参数估计的有效性。原创 2025-07-15 10:24:42 · 1013 阅读 · 0 评论 -
【EM算法】算法及注解
EM算法是一种迭代算法,用于含有隐变量的概率模型参数估计。它通过交替执行E步(计算期望)和M步(参数极大化)逐步优化模型。算法对初始值敏感,每次迭代都增大似然函数直至收敛。收敛条件通常设定为参数变化或对数似然变化小于阈值。该算法解决了观测变量和隐变量共存时的参数估计问题,是极大似然估计的重要扩展。原创 2025-07-15 10:24:16 · 372 阅读 · 0 评论 -
【拓扑空间】示例及详解4
摘要:本文通过6个示例探讨拓扑空间的基本概念与性质。例1验证实数集子集族构成拓扑;例2分析子集的内点、邻域、聚点及闭包;例3证明度量空间中闭集性质并给出反例;例4讨论子空间中聚点关系;例5证明互补集的闭包互补性;例6研究子空间与全空间闭包、内部的关系。内容涵盖拓扑定义、聚点理论、闭集性质及子空间拓扑等核心概念。原创 2025-07-11 12:53:17 · 713 阅读 · 0 评论 -
【拓扑空间】示例及详解3
本文摘要:探讨拓扑空间的基本概念与实例分析。首先列举三元素集上的9类代表性拓扑结构(同胚意义下),包括离散拓扑和平凡拓扑。通过实例验证开集公理,证明余有限拓扑和余可数拓扑的合法性。最后讨论子集性质,定义聚点、导集和闭包等概念,并给出求解方法。全文通过具体案例阐释拓扑空间的核心定义与性质。原创 2025-07-11 12:52:46 · 743 阅读 · 0 评论 -
【拓扑的基】示例及详解
摘要:本文讨论了拓扑空间基的定义与性质。基是满足特定条件的子集族,能够生成拓扑。文中证明了由基生成的族确实构成拓扑,并指出单点子集族可生成离散拓扑。此外,给出了两个基生成拓扑的等价条件:一个拓扑细于另一个拓扑,等价于对任意点和基元素存在更小的基元素包含该点。这些结果为理解拓扑结构提供了基础工具。原创 2025-07-10 10:50:35 · 398 阅读 · 0 评论 -
【拓扑空间】示例及详解2
这篇摘要讨论了拓扑空间中子集内点、邻域和内部的概念及其性质。主要内容包括:1)内点的定义及其与邻域的关系;2)集合内部的构成,即所有内点的集合;3)证明了内部是包含于该集合的最大开集;4)通过5个例子展示了内部运算的性质证明。这些内容属于点集拓扑学的基础理论,涉及开集、邻域等核心概念的关系分析。原创 2025-07-10 10:49:57 · 273 阅读 · 0 评论 -
【拓扑空间】示例及详解1
从这个意义上讲,拓扑空间是欧氏空间和度量空间的推广,拓扑公理也是从度量空间的开集的基本性质中抽象出来的。的元素,元素间的任意并依旧是若干个球形邻域的并集,故对任意并封闭)每个度量空间都可以看成具有度量拓扑的拓扑空间,从而欧氏空间。的任意两球形邻域的交集是若干球形邻域的并集。也是拓扑空间,其度量拓扑称为欧氏拓扑。为X上由度量d决定的度量拓扑。(若干个球形邻域的并集都是。原创 2025-07-09 15:28:35 · 431 阅读 · 0 评论 -
【模糊集合】分解定理I、II、III
本文阐述了模糊集合分解的三个定理。分解定理I表明模糊集合可由其截集族确定;分解定理II指出模糊集合可由其强截集族确定;分解定理III则说明模糊集合可由特定集合族确定,并给出了三个相关性质。这些定理为模糊集合的表示和性质分析提供了理论基础。原创 2025-07-09 15:28:01 · 160 阅读 · 0 评论 -
【分解定理】截集与强截集2
摘要:本文探讨了模糊集分解定理中截集与强截集的性质及相互关系。研究表明,截集和强截集具有特定的结构特性,并满足一系列运算规律。通过分析不同指标集条件下的集合关系,揭示了截集与强截集之间的内在联系,为模糊集理论的应用提供了重要的理论基础。原创 2025-07-08 11:02:41 · 431 阅读 · 0 评论 -
【分解定理】截集与强截集
摘要:截集和强截集是将模糊集合转化为经典集合的重要方法。截集包含隶属度大于等于阈值的元素,而强截集则要求严格大于阈值。这种阈值化处理实现了模糊集合的分类,强截集的条件更为严格。文中通过三个例题展示了不同阈值下截集和强截集的应用,说明了它们在不同水平上的分类特性。原创 2025-07-08 11:01:58 · 267 阅读 · 0 评论 -
【拓扑空间】可分性2
如果拓扑空间有可数的稠密子集,则称是可分拓扑空间。可分:有可数子集A,拓扑空间:1.2.任意并3.有限交稠密:闭包导集:所有聚点的集合聚点:任意去心领域。原创 2025-07-07 12:28:08 · 1018 阅读 · 0 评论 -
【模糊集合】模糊算子
模糊算子的清晰城是刻画一个模糊算子模糊程度的一种度量,清晰城越小,对应的算子就越模糊。的Hamming模糊度与Euclid模糊度。设T为t模,S为s模,若对任意的。清晰域:运算结果是0或1的定义域。清晰域:运算结果是0或1的定义域。清晰域:运算结果是0或1的定义域。清晰域:运算结果是0或1的定义域。则称T与S为对偶模或对偶算子。设模糊算子T与S对偶,已知。交换+结合+单调+边界。则称S为s模或三角余模。是一个模糊算子,称集合。则称T为t模或三角模。原创 2025-07-04 17:38:43 · 1383 阅读 · 0 评论 -
【模糊集合】示例
上述为模糊集合的Zadeh记法,其中的“+”号不表示分式求和,仅作为一种记号,交、并、补运算实际上是分别对隶属度取下确界、上确界和余。的隶属度分别为0.4、0,交运算取下确界0,故。以隶属度0.5为例,补0.5,故。上模糊集合的全体组成的集合称为。原创 2025-07-04 17:37:58 · 630 阅读 · 0 评论 -
【拓扑空间】可分性
任取X的一个可数子集A,由余可数拓扑,则A的补集是开集,则A是闭集,则。X是无限集,则必有可数无限子集B,又A是从R中任取的无限子集,则。有可数的稠密子集,则称。任取R的一个无限子集A。,即X任一无限子集稠密。可分:有可数子集A,原创 2025-07-03 10:57:40 · 1139 阅读 · 0 评论 -
【模糊集合】隶属函数、关系与运算
模糊集合论是一种描述模糊现象的方法,这种方法把待考察的对象及反映它的模糊概念作为一定的模糊集合,建立适当的隶属函数,通过模糊集合的有关运算和变换,对模糊对象进行分析。模糊集合论以模糊数学为基础,研究亦此亦彼的模糊现象。原创 2025-07-03 10:57:23 · 1481 阅读 · 0 评论 -
【分明集合】特征函数、关系与运算
经典的集合论中,对于一个给定的集合,任意一个元素,或者属于这个集合,或者不属于这个集合,二者必居其一,且仅居其一,为了加以区分, 通常将这样的集合称为分明集合、经典集合或者普通集合。原创 2025-07-02 21:43:25 · 771 阅读 · 0 评论 -
【格与代数系统】格与哈斯图
其中,选取两个元素b、c, 它们所有的下界: d、e、f,但是d和e没有可比性 ,故b、c不存在下确界(最大下界),所以上例不是格。整数集合上的小于等于(大于等于)关系、幂集中的包含关系 、正整数的整除和整倍数关系都满足偏序关系,是一些常见的偏序关系。如果y覆盖x,则在x和y中间连线,线的方向默认从下往上。例:{8,4,2,1}的小于等于关系中,8覆盖4,但是8不覆盖2。在哈斯图中,用小圈来表示元素。两个元素, 都有上下确界, 所以是格。哈斯图是一种用来表示偏序关系的图。一个偏序关系的逆关系也是偏序关系。原创 2025-07-02 21:43:10 · 3284 阅读 · 0 评论 -
【偏微分方程】基本概念
若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该微分方程的通解。注2:不同类型的范数不影响是否满足Lipschitz条件的判断,只影响Lipschitz常数的大小。:含有参数、未知函数和未知函数的导数的方程称为微分方程,例如。:微分方程中出现的未知函数最高阶导数的阶数称为微分方程的阶。:当通解中的各任意常数都取特定值时所得到的解称为方程的特解。偏微分方程课程及理论研究的是少数特殊类型的偏微分方程的共性。线性偏微分方程:关于未知函数和未知函数的各阶偏导数是线性的。原创 2025-06-26 17:05:48 · 6766 阅读 · 0 评论 -
【格与代数系统】格与代数系统汇总
2、一个具有两个二元运算的代数系统,若其上的两个运算满足交换律、结合律、吸收律,则称之为代数格。1、一个偏序集,若其中任意两个元素的上、下确界都存在,则称之为偏序格;中的两个二元运算满足交换律、结合律、吸收律,则存在一个格。中,小于或等于关系,即满足偏序关系,可以有关系矩阵。是有界格,1和0分别表示其最大元和最小元,则对任意。是格,若其上的两个二元运算满足分配律,即对任意的。是格,在其上定义一种补运算,即对任意的。既是有界格,又是对偶格、分配格,则称。是稠密的对偶格,且满足完全分配律,则。原创 2025-06-25 15:00:57 · 4043 阅读 · 0 评论 -
【格与代数系统】特殊的格
本文系统探讨了格与代数系统的概念及其分类。首先介绍了偏序集、全序集等基本概念,重点分析了分配格、有界格、有补格和布尔代数等格的重要类型及其性质。布尔代数作为兼具分配性和有补性的特殊格,具有唯一的补元运算。文章还讨论了对偶格、软代数、完备格等扩展概念,其中完备格要求所有非空子集都有确界。最后引入优软代数概念,即满足稠密性、对偶性和完全分配律的代数系统。研究表明布尔代数必为软代数,优软代数必为软代数,完备格必为有界格。这些结果为格论与代数系统的理论研究提供了系统框架。原创 2025-06-25 15:00:14 · 3063 阅读 · 0 评论 -
【格与代数系统】示例2
优软代数:对偶+稠密+完全+无限分配律。依据分明集合间运算的性质,详见。依据分明集合间运算的性质,详见。有补格:每个元素都有补元。对偶格:复原律+对偶律。布尔代数:有补+分配。原创 2025-06-24 18:58:00 · 493 阅读 · 0 评论 -
【格与代数系统】示例
因此,无限分配律第一个表达式成立,同理可得无限分配律第二个表达式,故无限分配律成立,故代数系统。一般,若一个线性序集中的元素多于两个,那它一定不是有补格。,故b=1,b=0,矛盾,故不存在b是a的补元,故。诱导的代数系统,则其上的二元运算满足(ABCD)代数系统满足交换律、幂等律、吸收律、结合律。不是有补格(有补格:每个元素都有补元)优软代数:对偶+稠密+完全分配律。优软代数:对偶+稠密+完全分配律。完备格:非空子集都有上下确界。稠密性:任意两元间仍有一元。有界格:有最大、最小元。对偶格:复原律+对偶律。原创 2025-06-24 18:56:00 · 581 阅读 · 0 评论 -
【格与代数系统】基本概念和性质
格是兼具偏序结构和代数性质的重要概念。偏序格定义为任意元素对存在上下确界的偏序集,由此可诱导出具有交(∧)和并(∨)运算的代数系统。代数格则需满足交换律、结合律和吸收律。两种定义等价:偏序格可导出代数格,反之满足特定运算律的代数系统也能构造出偏序格。格理论通过这两种表现形式,架起了序结构与代数系统之间的桥梁,在数学和计算机科学中有广泛应用。原创 2025-06-22 11:57:55 · 714 阅读 · 0 评论 -
【格与代数系统】偏序关系、偏序集与全序集
本文介绍了二元关系的基本概念,重点讨论了偏序关系及其相关性质。定义偏序关系需满足自反性、反对称性和传递性。偏序集(poset)是指配备了偏序关系的集合。在此基础上,阐述了可比性、全序集(线性序)、链等概念。最后,详细说明了偏序集中的最值、上下界以及上下确界的定义和表示方法。这些概念构成了有序集合理论的基础框架。原创 2025-06-22 11:56:18 · 1093 阅读 · 0 评论 -
【隐马尔可夫模型】用后向算法计算观测序列概率P(O|λ)
【隐马尔可夫模型】用后向算法计算观测序列概率P(O|λ原创 2025-06-17 23:21:45 · 492 阅读 · 0 评论 -
知识点|MTV模式(Model-template-view)
MTV(Model-template-view)模式是Django中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、模板(Template)和视图(View)。Django作为Web框架,需要一种很便利的方法动态的生成HTML网页,因此有了模板(T)这个概念。模板包含所需HTML的部分代码以及一些特殊的语法,特殊语法用于描述如何将视图传递的数据动态插入HTML网页中。视图(V)类似MVC模式中控制器和视图的集成。原创 2025-06-14 17:17:24 · 1900 阅读 · 0 评论 -
知识点|MVC模式(Model–view–controller)
MVC (Model–view–controller)模式是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、视图(View)和控制器(Controller)。MVC 以一种插件式的、松耦合的方式连接在一起。浏览器通过视图向控制器发出请求,控制器接收到请求后选择模型进行处理,处理完请求以后再转发到用于展示结果的视图,进行视图界面的渲染并做出最终响应。原创 2025-06-14 17:16:59 · 1357 阅读 · 1 评论 -
【SAS求解多元回归方程】REG多元回归分析-多元二次回归
【SAS求解多元回归方程】REG多元回归分析-多元二次回归原创 2025-06-13 20:01:50 · 1479 阅读 · 1 评论 -
【SAS求解多元回归方程】REG多元回归分析-多元一次回归
摘要:本文通过SAS的REG过程演示了多元线性回归分析。示例使用8组观测数据,建立y与x1-x3的回归模型。分析内容包括参数估计(含p值检验)、方差分析(回归平方和、残差平方和)、模型显著性检验,以及决定系数、复相关系数等统计量。当p值显示某些自变量不显著时,需进行变量筛选优化模型。最终输出了回归方程、拟合诊断及各项统计指标,全面评估了模型的解释力和拟合效果。原创 2025-06-12 16:46:38 · 2645 阅读 · 1 评论 -
似然函数&对数似然函数&负对数似然函数
似然函数Lθ∣XLθ∣X是在给定参数θ\thetaθ下,观测数据XXX出现的概率。它是统计推断中的一个核心概念,用于衡量在特定参数假设下,观测数据的合理性。假设我们有一组观测数据Xx1x2xnXx1x2xn,并且假设这些数据是独立同分布的iid(i.i.d.)iidLθ∣X∏i1nPxi∣θLθ∣Xi1∏nPxi∣θθ\thetaθ。原创 2025-06-11 18:04:04 · 1114 阅读 · 0 评论 -
【解决办法】git clone报错unable to access ‘xxx‘: SSL certificate problem
这意味着Git在进行HTTPS连接时不会验证服务器的SSL证书,可能会导致不安全的连接。在特定情况下,如果你无法正确地验证证书,或者遇到错误的SSL证书,你可以使用这个命令来解决问题。这个命令不仅复制远程仓库中的所有文件,还复制仓库的历史记录,使得你可以在本地进行版本控制操作,如提交(commit)、分支(branch)和合并(merge)等。配置git证书信任:有时候,Git无法识别服务器的SSL证书,需要手动配置信任。更新git版本:可能是你使用的git版本较老,无法识别最新的SSL证书。原创 2025-06-10 19:43:27 · 828 阅读 · 0 评论 -
DataFrame中.iloc 属性
iloc是 Pandas 库中 DataFrame 和 Series 对象的一个属性,用于基于整数位置的索引来选择数据。与基于标签的.loc索引不同,.iloc使用从 0 开始的整数位置来访问行和列。这对于处理需要按位置而不是按标签选择数据的场景非常有用。原创 2025-06-10 19:42:53 · 1278 阅读 · 0 评论 -
求解一次最佳平方逼近多项式
上的一个一次最佳平方逼近多项式。原创 2025-06-08 18:40:38 · 1149 阅读 · 0 评论 -
Hermite 插值
不少实际问题不但要求在节点上函数值相等,而且还要求它的导数值相等,甚至要求高阶导数值也相等。满足这种要求的插值多项式就是 Hermite 插值多项式。下面只讨论函数值与导数值个数相等的情况。个条件,可唯一确定一个次数不超过。原创 2025-06-08 18:39:56 · 741 阅读 · 0 评论 -
【清晰教程】查看和修改Git配置情况
Git配置管理指南:通过命令行可查看Git版本(git --version)及各层级配置。查看配置分为全局(--global)、本地(--local)和特定键值查询。修改配置使用git config <key> <value>格式,如设置全局用户名和邮箱(--global user.name/email)。这些命令帮助开发者管理Git环境配置。原创 2025-06-02 17:44:19 · 989 阅读 · 0 评论 -
自然图像数据集
本文介绍了四个常用计算机视觉数据集:1) CIFAR-10包含10类32x32图像(6万张),用于基础分类任务;2) CIFAR-100扩展为100类,提供更细粒度分类挑战;3) AFHQ包含1.5万张512x512动物面部图像,适用于高分辨率处理;4) FFHQ提供7万张1024x1024高清人脸图像,支持复杂人脸分析任务。这些数据集由权威团队整理,广泛应用于深度学习模型的基准测试,覆盖从基础分类到高分辨率图像处理等多个研究领域。原创 2025-06-03 20:07:46 · 609 阅读 · 0 评论 -
Hölder Statistical Pseudo Divergence & Proper Hölder Divergence
Hölder Statistical Pseudo Divergence是一种度量两个概率分布。Proper Hölder Divergence通过引入权重参数。差异的方法,它基于Hölder不等式。来平衡两个分布的贡献,从而满足对称性。原创 2025-06-01 17:31:34 · 638 阅读 · 0 评论 -
Beta分布&Dirichlet分布
两者的概率密度函数都具有幂函数的形式,其中Beta分布是一维的,而Dirichlet分布是多维的。Dirichlet分布可以看作是Beta分布的多维推广。Dirichlet分布是定义在K维实数向量上的多项分布的共轭先验,通常用于模拟多类别分布。这些分布的概率密度函数在贝叶斯统计和机器学习中非常重要,因为它们提供了一种自然的方式来表示和处理概率分布。Beta函数是两个伽马函数的比值,它确保了概率密度函数的积分总和为1。Beta分布和Dirichlet分布的概率密度函数都涉及到了伽马函数。原创 2025-06-04 23:16:35 · 1936 阅读 · 0 评论