GAMS语言详解

 

1. GAMS是什么?

GAMS (General Algebraic Modeling System) 是一种高级建模系统,专为解决数学规划和最优化问题而设计。它由美国世界银行的开发团队在20世纪70年代末期创建,其核心目标是提供一个统一的、高层次的语言,让用户能够以代数形式清晰地表达复杂的模型,而无需关注底层求解器的细节。

GAMS 的独特之处在于它将模型描述(即代数公式和数据)与求解算法(即求解器)完全分离。你只需用 GAMS 语言定义模型的所有元素(包括集合、数据、变量、方程和目标函数),然后 GAMS 系统会自动选择或允许你指定合适的求解器来解决该模型。这种“声明式”的建模方法使得模型更易于理解、维护和扩展,极大地提高了建模效率。

GAMS 广泛应用于经济学、工程、能源系统、供应链管理、环境科学和农业等多个领域,用于解决线性规划(LP)、非线性规划(NLP)、混合整数规划(MIP)、混合整数非线性规划(MINLP)等各种复杂的优化问题。

2. GAMS的核心建模元素

一个完整的 GAMS 模型通常由六个核心部分构成,每个部分都服务于特定的目的。

2.1 集合 (Sets)

集合是 GAMS 语言最基本的构建块,用于定义模型的维度和索引。GAMS 模型的强大之处在于它能够处理大型数据结构,而集合正是实现这一点的关键。通过定义集合,你可以用简洁的代数形式来表示成百上千个变量和方程。

  • 语法: SETS 关键字用于声明集合。

    SETS
      i "工厂" / 1*10 /
      j "市场" / A, B, C, D / ;
    
    

    在这个例子中,i 集合代表10个工厂,j 集合代表4个市场。你可以通过这些索引来定义变量和数据,例如 x(i, j) 代表从工厂 i 到市场 j 的运输量。

2.2 数据 (Data)

GAMS 提供了多种方式来声明和输入数据,确保模型与数据是分离的。

  • SCALARS (标量): 用于定义单个数值。

    SCALARS
      f "运费" / 90 /
      e "排放上限" / 1000 / ;
    
    
  • PARAMETERS (参数): 用于定义带索引的数据,通常是向量或矩阵。

    PARAMETERS
      a(i) "工厂产能" / 1: 150, 2: 250, 3: 120 /
      b(j) "市场需求" / A: 100, B: 200, C: 150 / ;
    
    
  • TABLE (表格): 用于定义二维或多维矩阵,提供更直观的数据输入格式。

    TABLE d(i,j) "工厂到市场的距离"
           A    B    C
      1   10   20   30
      2   15   25   35
      3   18   28   38 ;
    
    

2.3 变量 (Variables)

变量代表模型中需要优化的未知量。GAMS 要求你声明每个变量的类型。

  • 语法: VARIABLES 关键字用于声明变量。

    VARIABLES
      x(i, j) "运输量"
      z "总成本" ;
    
    
  • 变量类型: GAMS 提供了多种变量类型来适应不同类型的优化问题。

    • FREE VARIABLE (默认): 无约束变量,可为正、负或零。

    • POSITIVE VARIABLE: 非负变量(ge0)。

    • BINARY VARIABLE: 二进制变量(0或1)。

    • INTEGER VARIABLE: 整数变量。

你也可以为变量设定上下界。

x.lo(i,j) = 0 ;   ( 运输量不能为负 )
x.up(i,j) = 100 ; ( 运输量上限为100 )

2.4 方程 (Equations)

方程是定义模型约束和目标函数的代数表达式。GAMS 的方程语法与数学表达式非常相似,易于理解和编写。

  • 语法: EQUATIONS 关键字用于声明方程的名称,然后在模型部分定义其具体代数形式。

    EQUATIONS
      cost_equation "定义总成本"
      supply_constraint(i) "工厂产能约束"
      demand_constraint(j) "市场需求约束" ;
    
    
  • 方程的定义:

    cost_equation.. z =e= sum((i,j), d(i,j) * x(i,j)) ;
    supply_constraint(i).. sum(j, x(i,j)) =l= a(i) ;
    demand_constraint(j).. sum(i, x(i,j)) =g= b(j) ;
    
    

    这里的 e= 代表“等于”(equality),=l= 代表“小于或等于”(less than or equal to),=g= 代表“大于或等于”(greater than or equal to)。sum 是一个内置函数,用于对集合中的所有元素求和。

2.5 模型与求解 (Model and Solve)

在定义完所有元素后,你需要将它们组合成一个完整的模型并进行求解。

  • MODEL: 将相关的方程和变量捆绑在一起。

    MODEL transport_model / all / ;
    
    

    / all / 是一个简写,表示包含所有已声明的方程。你也可以显式地列出方程名称。

  • SOLVE: 执行求解过程。

    SOLVE transport_model USING LP MINIMIZING z ;
    
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

globaldeepthinker

能为我买一杯咖啡吗谢谢你的帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值