LeetCode刷题--- 粉刷房子

文章讲述了如何使用动态规划算法解决粉刷房子的问题,通过定义状态、状态转移方程和代码实现,求解给定颜色和成本矩阵下粉刷所有房子的最小花费。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


粉刷房子

题目链接:粉刷房子

题目

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

示例 1:

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色
     最少花费: 2 + 5 + 3 = 10。

示例 2:

输入: costs = [[7,6,2]]
输出: 2

提示:

  • costs.length == n
  • costs[i].length == 3
  • 1 <= n <= 100
  • 1 <= costs[i][j] <= 20

解法

算法原理讲解

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值

  • 状态显示
  1. dp[i][0] 表示:粉刷到 i 位置的时候,最后⼀个位置粉刷上「红色」,此时的最小花费;
  2. dp[i][1] 表示:粉刷到 i 位置的时候,最后⼀个位置粉刷上「蓝色」,此时的最小花费;
  3. dp[i][2] 表示:粉刷到 i 位置的时候,最后⼀个位置粉刷上「绿色」,此时的最小花费。
  • 状态转移方程
因为状态表示定义了三个,因此我们的状态转移⽅程也要分析三个:
  1. 对于 dp[i][0] :如果第 i 个位置粉刷上「红⾊」,那么 i - 1 位置上可以是「蓝⾊」或者「绿⾊」。因此我们需要知道粉刷到 i - 1 位置上的时候,粉刷上「蓝⾊」或者「绿⾊」的最⼩花费,然后加上 i 位置的花费即可。于是状态转移⽅程为: dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0] 。
  2. 对于 dp[i][1] :如果第 i 个位置粉刷上「蓝色」,那么 i - 1 位置上可以是「红色」或者「绿色」。因此我们需要知道粉刷到 i - 1 位置上的时候,粉刷上「红色」或者「绿色」的最小花费,然后加上 i 位置的花费即可。于是状态转移⽅程为: dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1] 。
  3. 对于 dp[i][2] :如果第 i 个位置粉刷上「绿色」,那么 i - 1 位置上可以是「红色」或者「蓝色」。因此我们需要知道粉刷到 i - 1 位置上的时候,粉刷上「红色」或者「蓝色」的最⼩花费,然后加上 i 位置的花费即可。于是状态转移⽅程为: dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2] 。
由此,我们可以推导出状态转移⽅程为:
dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0] ;
dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1]
dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2] ;
  • 初始化(防止填表时不越界)
在本题中,添加⼀行节点,并且初始化为 0 即可。
  • 填表顺序
根据「状态转移⽅程」得「从左往右,三个表⼀起填」。
  • 返回值
根据「状态表⽰」,应该返回最后⼀个位置粉刷上三种颜⾊情况下的最⼩值,因此需要返回min(dp[n][0], min(dp[n][1], dp[n][2])) 。

代码实现

class Solution {
public:
    int minCost(vector<vector<int>>& costs) 
    {
        int n = costs.size();
        vector<vector<int>> dp(n + 1, vector<int>(3));
        
        for (int i = 1; i <= n; i++) 
        {
            dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];
            dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];
            dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i - 1][2];
        }
        return min(dp[n][0], min(dp[n][1], dp[n][2]));
    }
};

### LeetCode 基础语法入门教程 LeetCode 是程序员提升算法能力的重要平台之一,掌握其基础语法对于高效解至关重要。以下是关于 C++ 和 Java 的基础语法要点以及如何应用这些知识来解决 LeetCode 上的问。 #### 1. 数据类型与变量 C++ 提供了多种基本数据类型,包括但不限于 `int`、`long` 和 `double` 等[^2]。在编写程序时,应根据具体需求选择合适的数据类型以优化内存使用和计算效率。例如,在处理大规模数值运算时,推荐优先考虑浮点数或长整型以避免溢出问。 #### 2. 控制流语句 控制流是编程的核心部分,它决定了代码执行路径的选择逻辑。常用的条件分支结构如 `if...else` 或者更复杂的多路判断工具——`switch case` 可帮助开发者根据不同输入情况采取相应操作。此外还有循环机制(for/while),它们允许重复执行某段特定指令直到满足终止条件为止。 #### 3. 容器类简介及其应用场景分析 为了更好地管理和存储大量动态变化的信息单元组群对象集合体概念模型抽象表示形式即我们常说的各种标准模板库(STL)组件实例化后的实体形态表现出来的东西叫做容器(Container),其中最常用的一些包括: - **Vector**: 动态数组,支持随机访问并能在尾部快速增删元素。 - **Set & Unordered_Set**: 分别代表有序集合并具备查找功能的哈希表版本;前者按升序排列后者则不关心顺序只关注唯一性检验速度更快些时候会用到find()方法来进行成员存在性的检测工作流程简化很多哦~ - **Map & Multimap**: 键值映射关系管理利器,能够轻松实现一对一或多对一关联查询任务目标达成效果显著提高工作效率的同时也减少了错误发生的可能性几率大大降低啦!另外还有一种叫Unorderd_Map变种形式同样适用于某些特殊场合条件下呢😊 #### 4. 特殊用途的数据结构介绍 - Deque (双端队列) Deque是一种可以在两端都进行插入删除操作非常灵活方便的一种线性序列结构形式表达方式呈现出来的样子感觉特别棒👍🏻通过下面这个例子我们可以看到它是怎么被创建出来的:`Deque<Integer> deque = new LinkedList<>();` 这样我们就得到了一个基于链接列表实现原理构建而成的新对象实例可供后续进一步开发拓展之用了呀😄[^3] #### 5. 关于栈(Stacks)的知识补充说明 最后值得一提的是有关Stack方面的内容知识点分享给大家知道一下吧~原来啊,在Standard Template Library里面啊,我们的老朋友Stack其实背后隐藏着秘密武器呢🧐那就是它可以由三种不同的底层支撑技术方案任选其中之一作为实际运行环境下的物理载体介质哟😎分别是向量(Vector),双向队列(Deque)或者是简单的单链表(List)...怎么样是不是很神奇呢😉[^4] ```java // 示例:Java 中 Stack 的简单使用 import java.util.Stack; public class Main { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); // 添加元素 stack.push(10); stack.push(20); System.out.println("Top element is: " + stack.peek()); // 输出顶部元素 // 删除顶部元素 stack.pop(); System.out.println("After popping, top element is: " + stack.peek()); } } ``` ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-元清-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值