AI领域已有很多深度学习框架,TensorFLow,PyTorch、Caffee2等,AI模型开发者面临从一个框架切换到另一个框架的困难,而框架开发维护者也面临不同芯片平台支持的挑战,因此AI芯片厂商需要为每款芯片提供多框架支持,每个算子可能需要以不同方式定义和实现,导致出现了面向专用架构的AI编译器:TVM、XLA、Glow等。
AI编译器结构
AI框架(TensorFLow,PyTorch、Caffee2)-- 高阶IR -- 编译器前端优化 -- 低阶IR -- 编译器后端优化 -- 可执行代码 -- 不同芯片(GPGPU/CPU/FPGA/TPU)
1.高阶IR (High-Level IR)
目标是提供一个抽象的、硬件无关的中间表示,以便于在编译器的前端和后端进行优化和转换。它应该能够捕获高级模型的语义和结构,同时保持足够的灵活性,以满足不同硬件架构的优化需求。
输入:来自AI框架的高层次模型表示。
功能:将高层次模型通过DAG和Let-bingding等构建计算图(建立控制流与算子、数据之间的关系),需提供对数据张量和算子的支持。

最低0.47元/天 解锁文章
2995

被折叠的 条评论
为什么被折叠?



