7-OpenCompass 大模型评测实战

知识篇

OpenCompass简介

工具主页:https://hub.opencompass.org.cn/home

上海人工智能实验室科学家团队正式发布了大模型开源开放评测体系 “司南” (OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。其主要特点如下:

  • 开源可复现:提供公平、公开、可复现的大模型评测方案
  • 全面的能力维度:五大维度设计,提供 70+ 个数据集约 40 万题的的模型评测方案,全面评估模型能力
  • 丰富的模型支持:已支持 20+ HuggingFace 及 API 模型
  • 分布式高效评测:一行命令实现任务分割和分布式评测,数小时即可完成千亿模型全量评测
  • 多样化评测范式:支持零样本、小样本及思维链评测,结合标准型或对话型提示词模板,轻松激发各种模型最大性能
  • 灵活化拓展:想增加新模型或数据集?想要自定义更高级的任务分割策略,甚至接入新的集群管理系统?OpenCompass 的一切均可轻松扩展!

OpenCompass历程目前opencompass已经应用头部大模型企业和科研机构
在这里插入图片描述在这里插入图片描述支持任务切分和并行,最大化利用计算资源

在这里插入图片描述
能力维度
opencompass同时也自建数据集,覆盖更多的场景。
在这里插入图片描述
共建行业生态
在这里插入图片描述

为何要做大模型评测

在这里插入图片描述

大模型评测的挑战

在这里插入图片描述

如何评测

需要评测的内容包括了基座模型和对话模型
在这里插入图片描述
包括了客观评测(包括如客观回答题、选择题)和主观评测(偏开放式的问答)

在这里插入图片描述还有对问题的提示词优化,以便能够让评测问题更明确,更能区分出不同模型的优势。
在这里插入图片描述
对长文本的评测
在这里插入图片描述

实战

本次实战依然在internStudio完成,选择50%的A100.

创建虚拟环境

studio-conda -o internlm-base -t opencompass

在这里插入图片描述在这里插入图片描述

拉取仓库项目

conda activate opencompass

git clone -b 0.2.4 https://github.com/open-compass/opencompass

在这里插入图片描述

安装组件

cd opencompass
pip install -e .

# 需要再执行如下,不然其他的组件没安装,后续执行要安装一堆东西
pip install -r requirements.txt

在这里插入图片描述

准备评测数据

cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

在这里插入图片描述

查看支持的模型和数据集

列出所有跟 InternLM 及 C-Eval 相关的配置

python tools/list_configs.py internlm ceval

# 不带参数是列出可以支持的模型和数据的清单及其配置
python tools/list_configs.py

在这里插入图片描述

安装protobuf

# 如果环境中没有该组件,那么请安装,否则运行评测脚本会报错
pip install protobuf

没有安装protobuf会报类似如下错误:
在这里插入图片描述

执行评测

export MKL_SERVICE_FORCE_INTEL=1

cd /root/opencompass

python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code
### OpenCompass 大模型评测方法分析 OpenCompass大模型评测方法主要分为客观评测和主观评测两部分。对于具有明确答案的任务,通过构建丰富的评测集来进行综合评价[^1]。具体来说,客观评测依赖于定量指标来衡量模型输出与标准答案之间的差异,并引入提示词工程和语境学习技术以降低噪声的影响[^2]。 #### 客观评测 在客观评测中,OpenCompass 使用两种核心方法: - **判别式评测**:该方法将问题与其可能的候选答案组合起来,计算每种组合的困惑度(Perplexity),最终选取困惑度最低的答案作为最优选项。这种方法适用于有固定答案的选择题形式任务。 - **生成式评测**:此方法主要用于评估模型的语言生成能力,例如翻译、摘要生成等任务。它通过对输入问题进行补全操作并结合后处理手段完成评测。 为了进一步提升评测质量,Objective Evaluation 还会考虑如何优化提示设计以及上下文理解过程中的干扰因素消除等问题[^3]。 #### 主观评测 针对开放性较强或者涉及安全性考量的内容,则更多依靠人工判断力来进行定性分析。在这种情况下,OpenCompass 设计了一套专门用于收集人类意见的数据结构——即所谓的“主观测试问题集合”。这套体系允许参与者依据个人体验对多个版本的回答给予分数评定;同时也会借助其他高级算法模拟真人反馈机制从而实现更高效的大规模样本采集工作流程。 此外,在实际应用过程中还会运用到诸如单个模型回复满意程度统计学分布规律研究以及跨平台对比实验等方式增强整体结论可靠性水平。 ### 数据准备与环境搭建 关于具体的实施步骤方面,用户需先下载官方发布的压缩包文件至指定目录下解压即可获得所需资源材料[^4]。而在开发环境中则推荐按照文档指南说明执行相应命令行脚本来配置好必要的软硬件设施条件以便顺利开展后续各项功能模块调试验证活动[^5]。 ```bash cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/ unzip OpenCompassData-core-20231110.zip studio-conda -o internlm-base -t opencompass source activate opencompass git clone -b 0.2.4 https://github.com/open-compass/opencompass.git cd opencompass pip install -e . ``` 以上代码片段展示了从获取基础数据直至部署运行环境所需的全部关键指令序列。 ### 结果分析 尽管当前并未提供确切数值层面的表现详情描述,但从理论框架角度来看,上述提到的各种策略共同作用能够有效保障整个评估系统的科学性和公正性特征得以充分体现出来。因此可以预期经过这样一套严谨程序筛选出来的优秀作品必然具备较高的可信度值得信赖采纳推广使用价值极高。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wengad

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值