PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting
文献来源:
北京师范大学系统科学学院 SIGSPATIAL 2020
- 效果:基于图(Graph)建模的 PM 2.5 预报中达到了当前最优(state-of-the-art, SOTA)的效果。基于图(Graph)建模的 PM 2.5 预报中达到了当前最优(state-of-the-art, SOTA)的效果。
研究区域
本文在如下图所示的地理空间进行研究(103°E-122°E 28°N-42°N),该区域包括了我国受雾霾影响最严重的几个城市群。在构建雾霾传输网络的时候,不仅需要考虑两个城市之间距离,还要考虑中间是否有影响传输的高山(雾霾一般分布在1200m以下)
数据:
PM2.5浓度数据、GFS预报数据、ECMWF预测数据
思路:
-
对污染的成因进行分析与简化,一个城市污染物来源于本地排放和外地输送,风是传输的主要动力,其他气象因素比如边界层高度、降雨、湿度等都会影响污染物在本地的累积与消散。基于复杂网络的观点,将污染物颗粒看成是在所构建的城市污染物传输网络上随机游走的粒子。用循环神经网络变体GRU与图神经网络GNN的组合进行动力学的建模,分别对应于大气污染的动力学组成部分。
-
将气象数据通过节点属性、连边属性的形式输入到网络中。而雾霾的浓度定义为节点状态。那么本文所解决的问题可以被构建为输入起始时刻的雾霾观测值以及未来的气象预报数据(数据来源于 GFS,可以作为已知数据),输出未来雾霾预报数据。
问题定义:
- Xt∈RN*1 (时间步t处的PM2.5浓度,N为节点处)
- 有向图G=(V,E) (V是城市的节点集合,E是城市间相互作用的边集合)
- Pt∈RNp、Qt∈RMq分别代表时间步t处的节点和边的属性矩阵,其中p、q为对应的属性数,M=|E|为边的大小
- 任意时间点t,给定当前的浓度Xt以及后续T步的属性矩阵[Pt, Pt+1…Pt+T]、[Qt, Qt+1… Qt+T],同时建立对应的有向图G
- 定义问题如下:
由此产生的网络结构:
边角料
- 有向图:G=(V,E) (V是城市的节点集合,E是城市间相互作用的边集合)
- 模型中的领域知识:节点属性和边属性
- 节点属性:行星边界层高度、K指数、风速、2m温度、相对湿度、总降水量、地面气压
-边属性:源节点风速|v|、源节点与交汇点距离d、源节点风向β、源节点到交汇点的方向γ、平流系数S
简化模型表示PM2.5跨区域输送,图中表示的是从源节点j到交汇点i的输送
-
邻接矩阵:
上式表示满足两个城市间的距离小于300KM以及城市间的山脉高度小于1200m条件下Aij=1否则为0 -
邻域信息迭代
-
ψФ可微
-
ξt i由之前预测的PM2.5浓度 及当前属性Pt i计算得到,边属性et j->i 由邻接节点和自身属性计算而来
下图给出指定节点i,其邻近节点j的传输近似于输入和输出之间的差值(输入和输出在图中用橙色线和蓝色线表示)空间相关性节点ζt i是通过总结所有的邻近节点的影响进行计算而得。
通过GUR单元来组合输入ξt i及空间相关性ζt i,得到最后的输出
实验结果:
参考:
1.https://www.sohu.com/a/431954915_741733
2.视频1
3.视频2
4空气污染如何损害我们的健康