《Learning to Cartoonize Using White-box Cartoon Representations》图像卡通化论文解析

本文详细解析了CVPR2020收录的一篇关于图像卡通化的论文,利用白盒卡通表示进行风格迁移。文章介绍了外观、结构和纹理特征的分解,并通过神经网络模型分别学习这些特征。整体网络结构包含固定参数的组件,配合多个损失函数确保生成图像的质量和真实性。实验表明,该方法在图像卡通化上取得了显著效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章收录于CVPR2020,在图像卡通化上效果不错。

github地址:https://github.com/SystemErrorWang/White-box-Cartoonization

那么这篇文章做了一件什么事呢?就是把真实世界的照片转为卡通风格的:

本文的思想主旨主要如下图:

将一张真实世界的图片分解为三种特征标识:1、外观特征  2、结构特征 3、纹理特征。 

分别介绍一下。1、外观特征容易理解,一张图大体上看来是怎么样的,去掉纹理、细节信息,就是外观特征。   2、结构特征,作者受启发于动漫的绘画方式,动漫总是用稀疏的颜色和分明的边界来勾画,因此结构特征图将原图分割后对不同部分上色,只保留大块的结构信息。   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哎呦不错的温jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值