《DLOW:Domain Flow for Adaptation and Generalization》论文解析

本文解析了DLOW算法,一种用于域适应和泛化的技术。通过定义中间域,DLOW能将源域数据转换为介于源域和目标域之间的风格,并在多个目标域中生成未见过的数据风格。实验表明,使用DLOW增强的域自适应模型能提升语义分割任务的性能,同时实现风格迁移的创新应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天说的这篇文章,也是用来解决迁移学习问题的。迁移学习要解决一个什么问题呢?就是要把模型在source域(源域)学习到的知识,用到target域(目标域)里。

DLOW这篇文章主要提出了两点:1、可以把source域的数据迁移成中间域,中间域也就是介于source和target之间的域。  2、训练的时候如果有多个target域的话,DLOW可以生成网络没有见过的数据风格。

那么接下来介绍一下算法原理:

1、CycleGAN

作为本算法的基础,cycleGAN至关重要。具体的介绍请看我另一篇博客:

https://blog.csdn.net/wenqiwenqi123/article/details/105123491

在这里复习一下,cycleGAN主要由两个loss组成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哎呦不错的温jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值