生成更精细的动漫脸——《Few-shot Knowledge Transfer for Fine-grained Cartoon Face Generation》论文解析

本文介绍了北大和字节跳动AI lab的研究,通过 Few-shot 算法改进了真实人脸到动漫人脸的转换,特别是在处理老人、小孩等特定人群时,能生成更精细的动漫脸。该方法结合了 U-GAT-IT 网络结构,加入了身份保持损失,并采用多分支网络进行知识迁移,以保留更多通用特征。实验结果显示,该方法在处理不同人群时表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天要介绍的这篇文章,来自北大和字节跳动AI lab。

首先放上arxiv地址:https://www.arxiv-vanity.com/papers/2007.13332/

这篇文章做了一件什么事呢?它在之前真实人脸转动漫的基础上,新加了Few-shot的算法,用少量数据就能让模型更好地生成某一类图片(比如老人、小孩)。

事实上这是一次image2image+domain adaptation的很好的尝试,跟迁移学习的相关算法结合了一下。

那么之前没看过那篇人脸转动漫文章的朋友可以先看看UGATIT:https://blog.csdn.net/wenqiwenqi123/article/details/105483884

 

这篇文章解决的问题如下图:

不同的人群的脸部特征是不一样的,比如女人的睫毛比较长,男人则不。老人脸上有皱纹,小孩则不。因此本文的算法可以在生成动漫图的时候,使算法更能适应各种不同的人物风格。

好的,接下来介绍一下本算法:

1、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哎呦不错的温jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值