人脸生成的最强算法——《StyleGAN》论文解析

本文介绍了英伟达的StyleGAN算法,该算法用于生成逼真的人脸图像。通过非线性映射网络将输入z转换为w,再通过仿射变换和AdaIN操作控制生成过程中的风格。StyleGAN的优势在于其解耦了人脸属性,通过不同层的w控制不同特征,实验结果显示生成的图像具有高度逼真性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们来看一篇人脸生成的论文,这个算法我愿称之为业界最强。

来自英伟达的styleGAN,全名《A Style-Based Generator Architecture for Generative Adversarial Networks》。

这个算法做的事很简单,生成逼真的人脸。不仅开源了代码,还开源了数据集,地址:https://github.com/NVlabs/stylegan

来看看算法思想:

正常的GAN网络都如左边这个a图所示,直接一个隐变量z作为输入,输入到生成器后经过层层网络得到输出。但是styleGAN没这么做,styleGAN使用隐变量z经过一系列非线性映射网络,得到w,同时在生成网络中使用了一个4*4*512的常量作为输入,如上图b所示。其中z和w都是512维,A是仿射变换,B是每个channel的高斯噪声的系数,w作用于生成的过程。AdaIN是:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哎呦不错的温jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值