
动态规划。dp[i][j] 表示长度 i 以 j 结尾的方案数。那么:dp[i][j] += dp[i − 1][k]
其中,保证 10 ∗ n + j 为质数。
初始条件为 dp[1][1 ∼ 9] 的值为 1。时间复杂度:O(k ∗ 100)
当中要注意的是:虽然题目上说是又0~9组成的,但是不用考虑0。因为如果有0,那么要么只作为开头要么只作为结尾,要么都做。如果作为结尾,则一定不是质数,如果只作为开头,那不需要考虑,因为

代码如下:
#include <bits/stdc++.h>
using namespace std;
int n,dp[1001][1001],s;
bool ch(int n)
{
for(int i = 2; i < n; i++)
if(n % i == 0)
return false;
return true;
}
int main()
{
cin>>n;
for (int i = 1; i <= 9; i++) dp[1][i] = 1;
for(int i = 2; i <= n; i++)
for(int j = 1; j < 10; j++)
for(int k = 1; k < 10; k++)
if(ch(k * 10 + j))
{
dp[i][j] += dp[i - 1][k];
dp[i][j] %= 10007;
}
for (int i = 1; i <= 9; i++)
{
s += dp[n][i];
s %= 10007;
}
cout << s;
return 0;
}