#780. 徐老师的快乐假期

本文介绍了一种使用动态规划解决特定数学问题的方法——寻找由0到9组成且以质数结尾的所有可能组合的数量。通过定义状态转移方程dp[i][j]表示长度i以j结尾的方案数,并确保每一步的转移都符合质数的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

动态规划。dp[i][j] 表示长度 i j 结尾的方案数。那么:dp[i][j] += dp[i − 1][k]
其中,保证 10 ∗ n + j 为质数。
初始条件为 dp[1][1 ∼ 9] 的值为 1时间复杂度:O(k ∗ 100)
当中要注意的是:虽然题目上说是又0~9组成的,但是不用考虑0。因为如果有0,那么要么只作为开头要么只作为结尾,要么都做。如果作为结尾,则一定不是质数,如果只作为开头,那不需要考虑,因为

代码如下:

#include <bits/stdc++.h>
using namespace std;
int n,dp[1001][1001],s;
bool ch(int n)
{
  for(int i = 2; i < n; i++)
    if(n % i == 0)
      return false;
  return true;
}
int main()
{
  cin>>n;
  for (int i = 1; i <= 9; i++) dp[1][i] = 1;
  for(int i = 2; i <= n; i++)
    for(int j = 1; j < 10; j++)
      for(int k = 1; k < 10; k++)
        if(ch(k * 10 + j))
        {
          dp[i][j] += dp[i - 1][k];
          dp[i][j] %= 10007;
		}
  for (int i = 1; i <= 9; i++)
  {
    s += dp[n][i];
    s %= 10007;
  }
  cout << s;
  return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值