1836:【04NOIP提高组】合并果子(三种做法)

本文介绍了解决果子合并问题的三种方法:贪心算法、堆和优先队列。通过实例代码详细展示了每种方法的具体实现过程,旨在帮助读者理解不同数据结构在解决同一问题时的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一,贪心

每次只要合并果子数量最小的两堆,再计算耗费的体力值即可。

代码:

#include <bits/stdc++.h>
using namespace std;
int ans,n,a[100001];
int main()
{
  cin>>n;
  for(int i = 0; i < n; i++) cin>>a[i];
  sort(a,a + n);
  while(n > 1)
  {
    a[1] += a[0];//合并最小的两堆
    ans += a[1];//消耗相应体力值
    for(int j = 1; j < n; j++) a[j - 1] = a[j];// 删除第一个元素
    n--;//长度--
    sort(a,a + n);//再次排序
  }
  cout<<ans;
  return 0;
}

 ,堆

每输入一个数就把它push进一个小顶堆,然后将最小的两个元素相加得到新的一堆(两个弹出操作),再消耗相应的体力值,再把新的一堆push进小顶堆中。

 代码:

#include <bits/stdc++.h>
using namespace std;
int ans,n,a[100001],sie = 0;//答案  输入果子种类的个数   长度
void push(int n)
{
  a[++sie] = n;
  push_heap(a + 1,a + 1 + sie,greater<int>());//把n push进最小堆
}
int pop()
{
  pop_heap(a + 1,a + 1 + sie,greater<int>());//弹出堆顶元素
  return a[sie--];//再返回堆顶数值
}
int main()
{
  cin>>n;
  for(int i = 1; i <= n; i++)
  {
    int t;
    cin>>t;
    push(t);//建立最小堆
  }
  while(sie > 1)
  {
    int s = pop() + pop();//将最小的两个元素相加得到新的一堆
    ans += s;//消耗相应的体力值
    push(s);//再把新的一堆push进小顶堆中
  }
  cout<<ans;
  return 0;
}

三,优先队列

#include <bits/stdc++.h>
using namespace std;
int ans,n,a[100001],sie = 0;
priority_queue<int,vector<int>,greater<int>> q;
int main()
{
  cin>>n;
  for(int i = 1; i <= n; i++)
  {
    int t;
    cin>>t;
    q.push(t);
    sie++;
  }
  while(sie > 1)
  {
    int s = q.top();
    q.pop();
    s += q.top();
    q.pop();
    ans += s;
    q.push(s);
    sie--;
  }
  cout<<ans;
  return 0;
}

关于greater的用法,详见C++ std::greater用法及代码示例_诸葛灬孔暗的博客-CSDN博客_c++ greater 

### NOIP 2004 提高 合并果子 Python 解题思路 #### 背景描述 合并果子问题是经典的贪心算法题目之一。给定若干堆果子的数量,每次可以选取两堆数量最少的果子将其合并成一堆,并记录此次合并所花费的成本(即这两堆果子数之和)。最终目标是最小化总成本。 #### 思路分析 为了最小化合并过程中的总成本,应该优先考虑将较小的两堆先合并起来。这样做的好处是可以减少后续较大规模合并时所需付出的成本。具体来说: - 使用一个小根堆来存储每堆果子的数量。 - 每次取出两个最小值进行合并操作,并把新得到的结果重新放回堆中继续参与下一轮比较。 - 记录每一次合并产生的费用直到只剩下一堆为止[^1]。 #### 实现方法 基于上述策略,在Python编程语言环境下可以通过`heapq`模块轻松构建这样一个高效的小顶堆结构来进行求解。 ```python import heapq def min_cost_to_merge_fruits(fruit_piles): # 将所有的果子堆加入到一个列表里, 并转换为最小堆 heapq.heapify(fruit_piles) total_cost = 0 while len(fruit_piles) > 1: # 取出当前最小的两堆果子 first_min = heapq.heappop(fruit_piles) second_min = heapq.heappop(fruit_piles) current_cost = first_min + second_min # 更新总的消耗代价 total_cost += current_cost # 把这次合并后的结果再加回到堆里面去 heapq.heappush(fruit_piles, current_cost ) return total_cost ``` 此函数接收一个整型数作为输入参数,代表初始状态下各堆果子的具体数目;返回的是完成全部合并不需要额外空间复杂度下的最低可能耗费时间/次数。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值