人工智能学习路线

本文介绍了人工智能领域的两种主要学习方法:监督学习和非监督学习。在监督学习部分,文章详细阐述了决策树、支持向量机、神经网络等算法的应用场景;在非监督学习部分,则重点讨论了聚类算法在人脸分类等任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能学习路线

1. 监督学习

决策树..................................................................银行信誉自动评估系统

临近取样..............................................................人脸识别

支持向量机.........................  图片中的人脸识别和癌症的早晚期分类

神经网络算法................................................手写数值识别 图片分类

线性回归...............................................................销售预测 价格预测

非线性回归............................................................销售预测 价格预测

 

2. 非监督学习

k-mean算法聚类.................................................................人脸分类

hierarchical dustering算法聚类......................................人脸噪音区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值