Spring Boot结合Redis与布隆过滤器:有效应对缓存穿透问题

  1. 电商平台场景
    背景:电商平台是一个在线购物系统,用户可以在平台上浏览商品、下单购买、支付等。

随着电商平台的用户量和商品量的不断增加,系统的并发访问压力也随之增大。

为了提高系统的响应速度和稳定性,电商平台通常会采用缓存技术来减少对数据库的访问次数。

目的:使用缓存的主要目的是减少数据库的查询压力,提高系统的响应速度,从而提升用户体验。

缓存技术可以有效地将热点数据存储在内存或分布式缓存中,当用户访问这些数据时,可以直接从缓存中获取,而无需查询数据库。

商品ID:商品ID是商品的唯一标识。用户通过商品ID来查询商品信息。当商品信息被缓存时,商品ID也作为缓存的键(key)来使用。

然而,有些恶意用户会利用不存在的商品ID来发起大量查询请求,这些请求会穿透缓存直接到达数据库,对数据库造成巨大压力,这就是缓存穿透问题。

布隆过滤器:布隆过滤器是一种空间效率很高的概率型数据结构,用于判断一个元素是否在一个集合中。它可能会出现误判(即错误地认为元素存在),但不会漏判(即错误地认为元素不存在)。布隆过滤器非常适合用于处理缓存穿透问题,因为它可以在不查询数据库的情况下快速判断一个商品ID是否可能存在。

  1. 技术细节
    设置布隆过滤器:

  2. 确定布隆过滤器的大小和误判率:根据预计存储的商品ID数量和可接受的误判率来确定布隆过滤器的大小。一般来说,误判率越低,需要的空间越大。

  3. 初始化布隆过滤器:在Spring Boot应用中,可以在启动时从数据库中读取所有商品的ID,并使用这些ID初始化布隆过滤器。布隆过滤器可以存储在Redis或其他分布式缓存中以便共享。

处理缓存穿透:

  1. 查询布隆过滤器:当用户发起商品查询请求时,首先查询布隆过滤器判断商品ID是否可能存在。

  2. 缓存查询:如果布隆过滤器判断商品ID可能存在,则继续查询Redis缓存。如果缓存命中,则直接返回商品信息;如果缓存未命中,则查询数据库。

  3. 数据库查询:如果缓存未命中,则查询数据库获取商品信息。如果商品存在,则将其存入Redis缓存并返回;如果商品不存在,则返回空结果。

  4. 更新布隆过滤器:当商品信息发生变更(如新增、删除)时,需要同步更新布隆过滤器。由于布隆过滤器不支持删除操作,因此可能需要定期重建布隆过滤器或使用其他策略。

  5. 具体实现
    在Spring Boot应用中结合Redis和布隆过滤器来处理缓存穿透问题。

首先,你需要一个布隆过滤器的实现。这里我们使用redisson客户端提供的RBloomFilter,它是一个Redis支持的布隆过滤器实现。

  1. 添加依赖:在pom.xml中添加redisson依赖:
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.16.6</version>
</dependency>
  1. 配置RedissonClient:在Spring Boot的配置类中配置RedissonClient:
import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚公搬程序

你的鼓励将是我们最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值