卫星任务规划 单站多星

本文介绍了如何使用CSTK(Chinese STK)进行地面站任务规划,以优化多卫星接收策略。在卫星数据地面站只能接收一颗卫星数据的情况下,面对若干卫星前后过境,通过任务规划确保效率最大化。用户可以在任务规划模态对话框中选择地面站、卫星和时间段,执行规划。任务甘特图以颜色标记冲突和接收状态,用户还可以调整参数并重新规划。代码已开源,提供试用链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章的任务规划主要针对卫星数据地面站而言, 地面站在某时间段内只能接收一颗星的数据, 如果同时有若干卫星前后过境,如何设计接收策略使得效率达到最优呢?那么这涉及到一个最优化的问题。

下面是CSTK(Chinese STK ,这是我师兄武汉大学林立宇教授帮我取得名字 :)   解决方案。

点击任务规划按钮,弹出“任务规划”模态对话框,我们选择“一站多星”面板, 分别选择地面站(只能选择一个),选择卫星(目前最多5颗星,从运行速度看,同时规划几十颗星也没问题),选择规划的时间段,然后“执行”。 

任务规划页面分为三个部分,上面是一个任务甘特图,Nuuk 是地面站名称,而AQUA及以下的四行是卫星的名字。上面右边的甘特图中红色的标签表示这段时间有冲突,绿色的标签表示无冲突。   红色实体表示该卫星在这个时间段内被放弃,绿色实体表示这个时间要接收这颗卫星的数据,在第一个时间周期内,GAOFEN-1高分一号被放弃,而CBERS-4 卫星的数据被接收。

左下角为任务规划的参数,用户可更改规划参数,然后进行从新规划。下面部分是“任务规划结果”, 列表中列出了某时间段要接收某卫星的详细任务信息。当用户在甘特图中点击实体的时间柱,列表中对应的时间段,会以绿色方式显示。  欢迎大家试玩。

试用:http://8.140.167.224:8000 

代码已开源

https://gitee.com/enigma19971/EOMS

### 任务规划中的拍卖算法实现 在系统任务分配领域,拍卖算法是一种高效的分布式优化方法。它通过模拟经济市场中的竞拍过程来完成任务分配,具有计算复杂度低、通信需求少以及易于扩展的特点[^1]。 #### 拍卖算法的核心原理 拍卖算法的主要思想来源于经济学中的拍卖机制。具体而言,在任务规划场景下,卫星作为“投标人”,而任务则被看作“商品”。每颗卫星会基于自身的状态(如燃料剩余量、传感器能力等),对各个任务进行估价并提交投标请求。最终由中央控制器或者特定节点决定哪些卫星获得对应的任务执行权。 该算法通常分为两个阶段:价格更新和指派决策。 - **价格更新**:对于每一个未分配的任务,其当前的价格会被调整以反映竞争程度。如果某项任务受到较关注,则价格上涨;反之亦然。 - **指派决策**:根据最新的价格信息,各参与者重新评估自己的效用函数,并尝试争取最优组合下的任务集合。 以下是简化版本的伪代码表示: ```matlab function [assignment, totalCost] = auctionAlgorithm(tasks, satellites, epsilon) % 初始化参数 numTasks = length(tasks); numSatellites = length(satellites); prices = zeros(1, numTasks); % 初始任务价格设为0 assignment = zeros(numSatellites, 1); % 卫星任务映射关系 while true maxBids = []; % 存储最高竞价者及其报价 % 遍历所有卫星,针对每个任务提出最佳出价 for i = 1:numSatellites bids(i,:) = calculateUtility(satellites{i}, tasks, prices); [~, idxMaxBid] = max(bids(i,:)); if isempty(maxBids) || (bids(i,idxMaxBid)-prices(idxMaxBid)) >= ... (maxBids{end}.bid-prices(maxBids{end}.task)) struct('satellite',i,'task',idxMaxBid,... 'bid',bids(i,idxMaxBid))... end; end % 更新获胜者的任务归属情况及相应成本变化 updateAssignmentsAndPrices(prices,maxBids,epsilon); % 当满足收敛条件时退出循环 if checkConvergence(totalCost, previousTotalCost, epsilon) break; end end end ``` 上述程序片段展示了如何利用MATLAB编写基本框架结构来进行实际操作演示。需要注意的是,“calculateUtility()” 函数定义取决于具体应用背景——例如考虑距离因素还是时间窗口约束等因素影响下的收益衡量标准。 #### 性能特点分析 相比其他集中式或启发式的调度策略,采用拍卖方式具备如下优势: - 计算效率高:由于每次迭代仅需局部交互即可推进全局进展,因此非常适合大规模动态环境; - 可拓展性强:新增加资源/负载不会显著增加原有体系负担; - 自适应能力强:能够快速响应突发状况带来的结构调整需求。 然而也存在局限之处,比如当网络延迟较大时可能降低实时性能表现,另外初始设定不当也可能导致次优解出现等问题需要进一步研究改进措施加以克服。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值