【团体程序设计天梯赛】L3-037夺宝大赛

思路:

还是一道很标准的最短路题,只不过需要我们去逆向一下思维,因为所有点都是要到达大本营的,不妨从大本营出发,到所有点,只需要一次最短路就结束了。

这个思维也是非常非常常见了,而且天梯赛也太爱考最短路了吧。

作者用的bfs+dijk+堆优化

代码:

#include <iostream>
#include <queue>
#include <cstring> 
#define N 110
using namespace std;

int m,n,k,mp[N][N],x,y,s,t;
int dist[N][N],vis[N][N];
int dx[4]={0,0,1,-1},dy[4]={1,-1,0,0};
struct node{
    int d,x,y;
    bool operator < (const node &a) const{
        return d>a.d;
    }
};

void bfs(){
    memset(dist,0x3f,sizeof dist);
    dist[s][t]=0;
    priority_queue<node> q;
    q.push({0,s,t});
    while(q.size()){
        node tmp=q.top();
        q.pop();
        int x=tmp.x,y=tmp.y;
        if(vis[x][y]) continue;//类似dijk,找到第一条最短的路就vis[x][y]=1
        vis[x][y]=1;
        for(int i=0;i<4;i++){//四个方向扩展
            in
<think>嗯,用户想了解L3-037夺宝大赛的编程题解法。首先,我需要回忆这个题目的具体要求。根据提供的引用,题目大致是给定地图和k个队伍,要求找出第一个到达大本营且没有冲突的队伍。如果都冲突,输出"No winner"。所以,关键点在于如何判断队伍到达时间的先后以及冲突的检测。 首先,得处理输入数据,包括地图的结构和各个队伍的移动路径。地图可能是一个网格,每个格子可能有不同的移动时间。队伍需要从起点出发到达大本营,计算他们的到达时间。然后比较各队的时间,找出最早到达且没有重复时间的队伍。 接下来,要考虑如何计算每个队伍的到达时间。可能需要使用广度优先搜索(BFS)或者Dijkstra算法,尤其是当地图中存在不同地形导致移动时间不同时。如果每个格子的移动时间相同,BFS足够;如果有不同权重,Dijkstra更适合。 然后,关于冲突检测的问题。如果有多个队伍在同一时间到达大本营,就视为冲突,这些队伍都不能成为胜者。所以需要记录每个队伍的到达时间,并检查是否有重复。 此外,题目可能要求队伍必须是在到达后第二天击败对手,或者有其他条件,比如路径上的障碍处理。需要仔细阅读题目描述中的规则,但根据引用中的描述,可能涉及最短路径和时间计算。 可能的步骤: 1. 解析输入,构建地图的二维数组,记录每个格子的移动时间。 2. 对每个队伍,计算从起点到大本营的最短时间。这里可能需要使用优先队列来处理不同路径的时间累加。 3. 收集所有队伍的到达时间,并找到最小的那个时间。 4. 检查是否有多个队伍拥有这个最小时间,若有,则输出"No winner";否则,输出对应的队伍编号和时间。 需要注意的是,可能有多个队伍路径不同但时间相同,或者存在多条路径导致时间计算错误。此外,地图中可能有障碍物或特殊规则,比如只能向特定方向移动,或者需要击败其他对手才能继续前进。需要根据题目具体描述调整算法。 另外,引用中提到的贪心算法可能适用,比如在每一步选择最近的对手,但具体如何结合到本题中还不明确。可能需要根据题目的具体规则来设计策略,比如如何选择路径中的节点以最小化总时间。 测试案例方面,需要考虑边界情况,如所有队伍都无法到达,或者多个队伍同时到达的情况。确保算法能正确处理这些情况,并输出正确的结果。 总结下来,解题步骤应包括: - 最短路径计算 - 时间记录与冲突检测 - 结果比较与输出 现在需要将这些思路转化为具体的代码结构,使用合适的算法和数据结构来实现。</think>### L3-037 夺宝大赛 解法分析 #### 核心思路 该编程题的核心在于**最短路径计算**和**冲突检测**。根据题目描述[^4],需要解决以下关键点: 1. 计算每个队伍到达大本营的最短时间 2. 验证是否存在唯一的最早到达队伍 #### 算法步骤 1. **地图建模** 将地图抽象为二维网格,每个网格记录移动时间。例如: ```python # 假设地图输入为n行m列的网格 grid = [ [1, 3, 2], [5, 1, 4], ... ] ``` 2. **最短路径计算** 使用**Dijkstra算法**处理带权网格: ```python import heapq def calculate_time(grid, start, end): rows, cols = len(grid), len(grid[0]) pq = [(0, start[0], start[1])] visited = [[False]*cols for _ in range(rows)] while pq: time, x, y = heapq.heappop(pq) if (x, y) == end: return time if visited[x][y]: continue visited[x][y] = True for dx, dy in [(-1,0),(1,0),(0,-1),(0,1)]: nx, ny = x+dx, y+dy if 0<=nx<rows and 0<=ny<cols: heapq.heappush(pq, (time + grid[nx][ny], nx, ny)) return float(&#39;inf&#39;) # 无法到达 ``` 3. **冲突检测** 记录所有队伍的到达时间并验证唯一性: ```python times = [] for team in teams: time = calculate_time(grid, team.start, base_camp) times.append( (time, team.id) ) times.sort() if len(times) == 0: print("No winner") elif len(times)>=2 and times[0][0] == times[1][0]: print("No winner") else: print(f"Team {times[0][1]}, Time: {times[0][0]}") ``` #### 优化方向 1. **预处理路径**:若大本营位置固定,可反向预处理所有起点到终点的最短路径[^2] 2. **剪枝策略**:当发现当前路径耗时已超过已知最短时间时提前终止搜索 3. **并行计算**:对多个队伍进行并行化路径计算 #### 注意事项 - **时间计算精度**:需确认题目是否要求考虑移动时间和战斗时间的叠加(例如引用[^1]提到的"到达后第二天"规则) - **多入口处理**:若队伍有多个可能的起点位置,需遍历所有起点 - **动态障碍**:若存在其他队伍改变地图的情况,需使用动态规划方法 ```python # 完整代码框架示例 class Team: def __init__(self, id, start_pos): self.id = id self.start_pos = start_pos def main(): # 读取输入 n, m = map(int, input().split()) grid = [list(map(int, input().split())) for _ in range(n)] base_camp = tuple(map(int, input().split())) k = int(input()) teams = [Team(i, tuple(map(int, input().split()))) for i in range(k)] # 计算各队时间 arrival_times = [] for team in teams: t = calculate_time(grid, team.start_pos, base_camp) arrival_times.append( (t, team.id) ) # 筛选结果 min_time = min([t for t,_ in arrival_times], default=None) candidates = [tid for t, tid in arrival_times if t == min_time] if len(candidates) == 1: print(f"Team {candidates[0]}, Time: {min_time}") else: print("No winner") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值