1.定义批量读取数据
2.导入torch包及数据集
3.初始化权重及偏移量
4.实现softmax函数并定义softmax模型
torch.matual(X.reshape((-1, W.shape[0])),W)+b
返回XW+b的值:输入矩阵X与权重矩阵W的矩阵乘积再加上偏移向量b;
一种最简单的线性回归模型。
5.实现交叉熵损失函数
交叉熵损失函数:
图中的后部分即为交叉熵损失函数的工作流程
即取-log累加和
这里解释下(y_hat[range(len(y_hat)),y])的用法:
y = torch.tensor([0,2]) y_hat = torch.tensor([[0.1, 0.3, 0.6],[0.3, 0.2, 0.5]]) y_hat[[0,1], y]
y_hat[[0,1], y]:从y_hat中分别取y[0], y[1]的值作为列号,取出y_hat[0,y[0]], y_hat[1,y[1]]
也就是y_hat中第1行的第一个数据 和第2行的第3个数据
即 取出真实值的在模型中的预测值大小。
6.定义多个变量的累加器
class Accumlator:
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0]* n
def add(self, *args):
self.data =[a + float(b) for a,b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
#evaluate_accuracy(net,test_iter)
这个累加器的作用是同时对预测的数量和预测的总数量进行累加求和,得到最终大小。
7.计算数据集在指定模型上的精度
def evaluate_accuracy(net, data_iter):
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() #模型设置为评估模式
metric = Accumlator(2) #设置一个迭代器,用来累加求和(正确预测数和预测总数)
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
8.训练
定义一个函数来训练一个迭代周期
def train_epoch_ch3(net, train_iter, loss, updater):
"""训练模型一个迭代周期"""
# 如果网络是PyTorch模块(而非手动实现),设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 创建累加器记录:总损失、正确预测数、样本总数
metric = Accumlator(3) # 注意:这里应为 Accumulator,存在拼写错误
# 遍历训练数据集的每个batch
for X, y in train_iter:
# 前向计算:通过神经网络获得预测值
y_hat = net(X)
# 计算损失值(单个batch)
l = loss(y_hat, y)
# 判断优化器类型(PyTorch内置优化器 vs 手动实现)
if isinstance(updater, torch.optim.Optimizer): # 拼写错误:tooch → torch
# PyTorch标准训练流程
updater.zero_grad() # 梯度清零
l.backward() # 反向传播
updater.step() # 参数更新
# 累加:损失总和、正确数、样本数(需用float转换避免类型错误)
metric.add(
float(l)*len(y), # 累计总损失 = 平均损失 × batch样本数
accuracy(y_hat, y), # 累计正确数
y.size().numel() # 累计总样本数
)
else:
# 手动实现优化器的情况(例如从零实现)
l.sum().backward() # 将损失求和后反向传播
updater(X.shape[0]) # 调用自定义优化器,传入batch_size
# 累加:总损失、正确数、样本数(假设l是向量)
metric.add(
float(l.sum()), # 直接累加损失总和
accuracy(y_hat, y),
y.numel() # 累计样本数
)
# 错误:return缩进错误,此处会导致第一次循环后直接返回
return metric[0] / metric[2], metric[1] / metric[2]
定义一个绘图类
class Animator: #@save
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
训练模型
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
"""训练模型"""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics