11、基于CRF和BERT的命名实体识别实践

基于CRF和BERT的命名实体识别实践

在自然语言处理(NLP)领域,命名实体识别(Named-Entity Recognition,NER)是一项重要的任务,它旨在从文本中识别出特定类型的实体,如人名、地名、组织机构名等。本文将详细介绍如何使用条件随机场(CRF)和BERT模型进行命名实体识别,并对两种模型的性能进行比较。

数据准备

在进行模型训练之前,我们需要对数据进行准备,包括训练数据和测试数据。

训练数据准备
  • 查看训练数据的前五行:
trivia_train.head()
  • 检查训练数据集的行数和列数:
trivia_train.shape

输出结果为 (166638, 3) ,表示训练数据集共有166,638行和三列。
- 检查训练数据集中的唯一单词数量:

trivia_train.tokens.nunique()

输出结果为10,986,表示训练数据中有10,986个唯一单词和7816个总句子。
- 检查训练数据集中是否存在空值:

trivia_train.isnull().sum()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值