基于CRF和BERT的命名实体识别实践
在自然语言处理(NLP)领域,命名实体识别(Named-Entity Recognition,NER)是一项重要的任务,它旨在从文本中识别出特定类型的实体,如人名、地名、组织机构名等。本文将详细介绍如何使用条件随机场(CRF)和BERT模型进行命名实体识别,并对两种模型的性能进行比较。
数据准备
在进行模型训练之前,我们需要对数据进行准备,包括训练数据和测试数据。
训练数据准备
- 查看训练数据的前五行:
trivia_train.head()
- 检查训练数据集的行数和列数:
trivia_train.shape
输出结果为 (166638, 3)
,表示训练数据集共有166,638行和三列。
- 检查训练数据集中的唯一单词数量:
trivia_train.tokens.nunique()
输出结果为10,986,表示训练数据中有10,986个唯一单词和7816个总句子。
- 检查训练数据集中是否存在空值:
trivia_train.isnull().sum()