简介
二叉排序树(Binary Sort Tree),又称为二叉查找树。它或者是一棵空树,或者是具有下列性质的二叉树。
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉排序树。
二叉排序树查找操作
/* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode /* 结点结构 */
{
int data; /* 结点数据 */
struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
} BiTNode, *BiTree;
/* 递归查找二叉排序树T中是否存在key,*/
/* 指针f指向T的双亲,其初始调用值为NULL */
/* 若查找成功,则指针p指向该数据元素结点,并返回TRUE */
/* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
Status SearchBST(BiTree T, int key, BiTree f, BiTree *p)
{
if (!T) /* 查找不成功 */
{
*p = f;
return FALSE;
}
else if (key == T->data) /* 查找成功 */
{
*p = T;
return TRUE;
}
else if (key < T->data)
return SearchBST(T->lchild, key, T, p); /* 在左子树继续查找 */
else
return SearchBST(T->rchild, key, T, p); /* 在右子树继续查找 */
}
- 从根结点开始查找,如果树为空或者查找失败则返回FALSE。
- 遍历它的左右子树,如果查找成功则返回TRUE。
二叉排序树插入操作
/* 当二叉排序树T中不存在关键字等于key的数据元素时,*/
/* 插入key并返回TRUE,否则返回FALSE */
Status InsertBST(BiTree *T, int key)
{
BiTree p, s;
if (!SearchBST(*T, key, NULL, &p)) /* 查找不成功 */
{
s = (BiTree)malloc(sizeof(BiTNode));
s->data = key;
s->lchild = s->rchild = NULL;
if (!p)
*T = s; /* 插入s为新的根结点 */
else if (key < p->data)
p->lchild = s; /* 插入s为左孩子 */
else
p->rchild = s; /* 插入s为右孩子 */
return TRUE;
}
else
return FALSE; /* 树中已有关键字相同的结点,不再插入 */
}
/* 调用插入函数生成二叉排序树 */
int i;
int a[10] = {62, 88, 58, 47, 35, 73, 51, 99, 37, 93};
BiTree T = NULL;
for (i=0; i<10; i++)
{
InsertBST(&T, a[i]);
}
- 先调用查找函数判断树中是否存在要插入的值,如果存在则返回FALSE。
- 如果不存在则插入,树为空则插入到根结点,否则插入到左右子树中。
二叉排序树删除操作
/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点,*/
/* 并返回TRUE;否则返回FALSE */
Status DeleteBST(BiTree *T, int key)
{
if (!*T) /* 不存在关键字等于key的数据元素 */
return FALSE;
else
{
if (key == (*T)->data) /* 找到关键字等于key的数据元素 */
return Delete(T);
else if (key < (*T)->data)
return DeleteBST(&(*T)->lchild, key);
else
return DeleteBST(&(*T)->rchild, key);
}
}
/* 从二叉排序树中删除结点p,并重接它的左或右子树。*/
Status Delete(BiTree *p)
{
BiTree q, s;
if ((*p)->rchild == NULL) /* 右子树空则只需重接它的左子树 */
{
q = *p;
*p = (*p)->lchild;
free(q);
}
else if ((*p)->lchild == NULL) /* 只需重接它的右子树 */
{
q = *p;
*p = (*p)->rchild;
free (q);
}
else /* 左右子树均不空 */
{
q = *p;
s = (*p)->lchild;
while (s->rchild) /* 转左,然后向右到尽头(找待删结点的前驱)*/
{
q = s;
s = s->rchild;
}
(*p)->data = s->data; /* s指向被删结点的直接前驱 */
if (q != *p)
q->rchild = s->lchild; /* 重接q的右子树 */
else
q->lchild = s->lchild; /* 重接q的左子树 */
free(s);
}
return TRUE;
}
- 第一个函数查找要删除的结点,遍历整棵树,如果结点存在则调用第二个函数进行删除操作,结点不存在则返回FALSE。
- 第二个函数进行具体的删除操作,如果待删除结点只有左子树或右子树,则用相应的左右子树替换待删除的结点;如果待删除结点左右子树均存在,则在它的左子树寻找最大的值或右子树寻找最小的值替换待删除结点,删除成功则返回TRUE。
总结
- 二叉排序树以链接的方式存储,插入和删除操作很方便。
- 对于二叉排序树的查找,其比较次数等于给定值的结点在树中的层数,查找性能取决于树的形状,树的形状是不确定的。
- 左图的树查找性能较高,右图就成了极端的右斜树,同样是查找结点99,左图只需要两次比较,而右图就需要10次比较才可以得到结果,二者差异很大。
- 我们希望二叉排序树是比较平衡的,即其深度与完全二叉树相同,查找的时间复杂度为O(logn),近似于折半查找。
- 不平衡的最坏情况如右图的斜树,时间复杂度为O(n),等同于顺序查找。
- 我们希望对一个集合按二叉排序树查找,最好把它构建成一棵平衡二叉树。