LeetCode - 417. 太平洋大西洋水流问题

本文介绍了一种算法,用于找到一个给定的非负整数矩阵中,哪些单元格的水流可以同时到达太平洋和大西洋。通过从边界开始的深度优先搜索(DFS),标记可达两个海洋的单元格,最终返回所有符合条件的坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个 m x n 的非负整数矩阵来表示一片大陆上各个单元格的高度。“太平洋”处于大陆的左边界和上边界,而“大西洋”处于大陆的右边界和下边界。

规定水流只能按照上、下、左、右四个方向流动,且只能从高到低或者在同等高度上流动。

请找出那些水流既可以流动到“太平洋”,又能流动到“大西洋”的陆地单元的坐标。

提示:

  1. 输出坐标的顺序不重要
  2. m 和 n 都小于150

在这里插入图片描述
解题思路: 此题一开始想到的是对每个点进行DFS搜索,看是否能找到两条从该点出发,直达两洋的路径,若存在则该点符合要求。但是估计会TLE。最后参考了网友Grandyang的解法,发现此题的解法需要变换一下思路,从四边开始搜索,这个思路在解被围绕的区域这题的时候出现过,也是从四边开始搜。此题如果转换这个思路做的话,就比较简单了。从四条边往中间搜索,将属于pacific/alantic的点分别标记,某点均被标记则表明它均可达pacific和alantic。

class Solution {
public:
    void dfs(vector<vector<int>>& matrix, int r, int c, int h, vector<vector<bool>> &visited) {
        int rows = matrix.size(), cols = matrix[0].size();
        if (r < 0 || r >= rows || c < 0 || c >= cols || visited[r][c] || matrix[r][c] < h) return;
        visited[r][c]  = true;
        dfs(matrix, r + 1, c, matrix[r][c], visited);
        dfs(matrix, r - 1, c, matrix[r][c], visited);
        dfs(matrix, r, c + 1, matrix[r][c], visited);
        dfs(matrix, r, c - 1, matrix[r][c], visited);
    }
    vector<vector<int>> pacificAtlantic(vector<vector<int>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) return {};
        int rows = matrix.size(), cols = matrix[0].size();
        vector<vector<bool>> pacific(rows, vector<bool>(cols, false)), atlantic(rows, vector<bool>(cols, false));
        for (int i = 0; i < rows; ++i) {
            dfs(matrix, i, 0, 0, pacific);
            dfs(matrix, i, cols - 1, 0, atlantic);
        }
        for (int j = 0; j < cols; ++j) {
            dfs(matrix, 0, j, 0, pacific);
            dfs(matrix, rows - 1, j, 0, atlantic);
        }
        vector<vector<int>> res;
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < cols; ++j) {
                if (atlantic[i][j] && pacific[i][j]) {
                    res.push_back({i,j});
                }
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值