- 博客(947)
- 收藏
- 关注
原创 C#优雅的处理TCP数据
Tcp是一个面向连接的流数据传输协议,用人话说就是传输是一个已经建立好连接的管道,数据都在管道里像流水一样流淌到对端。那么数据必然存在几个问题,比如数据如何持续的读取,数据包的边界等。
2025-09-06 21:47:49
653
原创 OpenAI 替代方案?Ollama 与 SpringAI 的实战体验
从自动配置到低级 API,SpringAI 对 Ollama 的支持真的非常全面。本地可控(不用担心数据安全)。免费运行(除了显卡电费)。兼容性好(API 类似 OpenAI)。在我的实战体验里,最让我惊喜的就是结构化输出 + BeanOutputConverter,直接把大模型回复变成 Java 对象,极大提升了业务开发效率。未来我打算在公司内部搭个私有化 AI 服务,用 Ollama + SpringAI,完全不依赖外部 API,既安全又高效。
2025-09-06 13:30:34
875
原创 C #编程技术难点有什么?高并发场景下Task与async/await性能瓶颈有哪些?C#调用系统API时应如何减少差异性问题?
C#作为一门现代编程语言,其技术难点涵盖多个层面,从运行时机制、内存管理、并发模型,到泛型与反射、性能优化和底层互操作。这些难点不仅考验开发者对语法的掌握,更要求对系统底层原理、运行机制和性能特征有深入理解。精准优化程序性能;设计健壮、安全的系统;在高并发和大规模应用场景下保持稳定运行;掌握新特性带来的效率提升,同时理解潜在风险。C#的技术挑战体现了现代软件开发的复杂性,同时也提供了丰富的探索空间。系统掌握这些知识,将有助于开发者在高性能计算、分布式服务、云原生和跨平台开发等领域获得优势。
2025-09-05 17:26:51
971
原创 uniapp实现钉钉网页应用jsapi鉴权、免登功能(前后端)
我们本来是有个app,已经正常上线使用了,框架用的是uniapp。现在想搞到钉钉应用上,一开始想做钉钉小程序,就先简单说一下钉钉小程序基础开发,然后再详细介绍钉钉网页应用。
2025-09-05 15:02:54
893
原创 基于SpringBoot和Leaflet集成在线天气服务的区县当前天气WebGIS实战
在当今数字化时代,地理信息系统(WebGIS)作为一种强大的空间信息展示与分析工具,已经广泛应用于各个领域。它不仅能够直观地呈现地理数据,还能结合实时信息为用户提供更加丰富和动态的体验。天气信息作为与人们日常生活息息相关的重要数据,其与WebGIS的结合更是具有巨大的应用价值。本文将深入探讨如何基于SpringBoot框架和Leaflet库,集成在线天气服务,构建一个展示区县当前天气的WebGIS系统,旨在通过实战案例为相关开发者提供参考和借鉴。
2025-09-05 14:36:00
974
原创 Sharding-JDBC分库分表
最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为,2020年416正式成为Apache软件基会的顶级项。随着版本的不断更迭 的核心功能也变得多元化起来。从最开始 Sharding-JDBC 1.0 版本只有数据分片,到 Sharding-JDBC 2.0 版本开始支持数据库治理(注册中心、配置中心等等),再到 Sharding-JDBC 3.0版本又加分布式事务 (支持AtomikosNarayanaBitronix。
2025-09-05 14:31:52
985
原创 别再只会背八股了!一文带你彻底搞懂UNION与UNION ALL的区别
好啦,今天的分享就到这里啦!UNION会去重,性能差一点;UNION ALL不去重,性能更好。场景不同,选择不同:报表用UNION,日志合并/分页用UNION ALL。面试时答题要分层次,既要讲基础区别,也要说性能原理,还要结合场景。
2025-09-05 09:48:07
669
原创 干货分享:Harmonyos Next组件式开发中的高效传参技巧
大家好,我是若城。写这个系列的目的是为了帮助大家在HarmonyOS开发时能够快速地掌握实用功能的开发技巧。本系列注重实用性和可操作性,提供简洁明了的代码示例和讲解,让开发者能够直接复制粘贴就可以实现相应功能。本文将重点介绍HarmonyOS Next中组件式开发的传参方法,这是构建可维护、可复用应用的关键技能。通过实际案例,我们将展示如何在父子组件间传递数据和方法,帮助你掌握组件通信的核心技巧。
2025-09-05 09:41:40
851
原创 基于华为开发者空间,链表操作秘籍—通讯录管理全接触
在现代软件开发中,数据结构的选择对程序的性能和可维护性有着至关重要的影响。数组和链表作为两种最基本的数据结构,分别适用于不同的场景。理解它们的特性和优劣,能够帮助开发者在实际项目中做出更合理的技术选型,从而优化系统性能。链表是一种动态的数据结构,它通过结点之间的指针链接来组织数据。与数组不同,链表的存储空间是动态分配的,不需要预先分配固定大小的内存。单向链表是一种基础的数据结构,由一系列节点组成,每个节点包含两部分:数据域和指针域。
2025-09-04 20:24:17
890
原创 一次Feign超时引发的血案:生产环境故障排查全记录
在一个风和日丽的下午,我正在享受着敲代码带来的的心流体验,突然生产那边的同事告诉我有一台设备无法正产生产,这种情况偶尔也会遇到,一般都能很快解决,但这次不同。我测试调用了一下线上接口,然后用 Skywalking 查找最近比较耗时的接口,就能找到调用的接口,总共耗时 20s,其中阶段 S2 耗时 8.5s。上一顿操作猛如虎,根据设备的生产任务信息找到了相关的日志,找相关的研发一起看了下,业务逻辑都是按照正常逻辑做的,生成的数据也是正常的,这就有点奇怪了。如果参数不一样,可以用缓存,而不是调用接口。
2025-09-04 19:58:40
1009
原创 ViTAR:模糊位置编码让视觉Transformer适配任意分辨率图像
ViTAR代表了视觉Transformer技术的重要进步,特别是在处理多样化和高分辨率图像数据的应用场景中表现出显著优势。该技术通过模糊位置编码的创新机制实现了输入尺寸的灵活性,保持了空间细节信息的完整性,同时避免了传统模型在预处理阶段的复杂操作。对于需要处理真实世界复杂视觉数据的应用场景,ViTAR提供了一个技术上更为先进和实用的解决方案。其在保持计算效率的同时实现了对任意分辨率图像的有效处理,为计算机视觉技术在更广泛领域的应用奠定了坚实的技术基础。作者:Rayan Yassminh。
2025-09-04 16:23:20
788
原创 华为开发者空间中基于Spotlight的电商推荐模型训练
在互联网时代,推荐系统一直以来都是一个热门技术领域,也是智能技术在商业中最成功和最广泛的应用之一。它是根据用户的历史行为、社交关系、兴趣点等信息去判断用户当前需要或感兴趣的产品或者服务的一类应用。推荐系统本身是一种信息过滤的方法,与搜索和栏目导航组成三大主流的信息过滤方法。隐式反馈和显式反馈是推荐系统中常用的两种反馈信息类型。它们在数据来源、处理方式和应用场景等方面有所不同。显式反馈是用户对物品的评分,如电影评分。
2025-09-04 16:21:54
983
原创 Spring AI 对话记忆大揭秘:服务器重启,聊天记录不再丢失!
自定义实现ChatMemory接口。Spring AI 的设计非常巧妙,它将“存储介质”和“记忆算法”解耦了。这意味着我们可以只替换存储部分,而不用改动整个对话流程。虽然官方没给示例,但没关系,我们可以“偷师”啊!直接去看默认实现类的源码,模仿它的实现。ChatMemory的源码显示,它内部其实就是用一个来存消息,Key 是对话 ID,Value 是这个对话的所有消息列表。思路有了,接下来就是实战!
2025-09-04 15:31:09
590
原创 Spring AI 骚操作:让大模型乖乖听话,直接返回 Java 对象!
还在为解析大模型返回的非结构化文本而头疼吗?还在用一堆if-else和正则表达式做着繁琐的字符串切割吗?现在,有了 Spring AI 的(Structured Output Converter),这一切都将成为过去式!这个神器能将大语言模型(LLM)返回的原始文本,精准地转换为你想要的任何结构化数据,无论是 JSON、XML 还是一个具体的 Java 对象。对于需要稳定、可靠地处理 AI 输出的应用程序来说,这简直是天降福音!
2025-09-04 15:30:59
731
原创 dify项目结构说明与win11本地部署
后续会深度研究下dify,智能体的应用要更广泛一些。我也会根据自己的需求,在dify中中的功能进行增强。
2025-09-04 10:45:53
991
原创 【node】token的生成与解析配置
在用户登录成功之后为了记录用户的登录状态通常会将用户信息编写为一个token,通过解析token判断用户是否登录。
2025-09-04 10:09:20
198
原创 百万商品大数据下的类目树优化实战经验分享
我们换个思路。倒排索引:查询速度快;聚合(Aggregation):专门干统计分析的活;水平扩展:数据量大也能 hold 住。所以,最终我们决定用来做。需求再小,背后都有大学问。一个小小的类目树,其实牵扯到搜索、聚合、性能优化。选对技术栈很重要。如果我们还死磕 MySQL,估计项目早黄了。实战是最好的学习。写博客讲出来,也算是对自己知识的一次梳理。如果你们的项目里,也有类似的“实时统计”、“大数据聚合”需求,Elasticsearch 一定要学会。
2025-09-04 10:06:39
858
原创 【Docker项目实战】使用Docker部署Ralbum开源照片浏览工具
Ralbum 是一款用于管理和浏览存储在文件系统中的图像和文件的Web应用程序。它通过生成文件夹和图像列表,让用户可以方便地查看和管理他们的图片库。Ralbum 提供了一个轻量级且用户友好的界面,支持多种浏览方式,包括按钮点击、智能手机上的滑动手势以及键盘快捷键导航。该工具确保原始文件的安全性,仅执行读取操作而不进行任何写入动作。1.本次实践部署环境为个人测试环境,生产环境请谨慎;2.在Docker环境下部署Ralbum应用。
2025-09-03 23:33:19
544
原创 【App Service】在Azure环境中如何查看App Service实例当前的网络连接情况呢?
在使用 Azure App Service(Windows 和 Linux)部署应用时,如何分析网络连接情况,尤其是查看特定端口(如 443, 3306, 6380等)的连接状态?所以App Service for Windows 环境中,没有直接的方式可以查看到当前的网络连接情况。但是,在App Service 云环境中,是否还可以使用netstat命令呢?命令在 App Service 的容器或Linux实例中查看端口连接情况, 但是在Windows环境中被禁用。,说明这些连接已成功建立,且由进程。
2025-09-03 20:25:37
869
原创 基于华为开发者空间实现花卉识别
随着人工智能技术的不断发展,图像识别技术在众多领域得到了广泛应用。花卉识别作为图像识别的一个重要分支,具有很高的研究价值和实际应用前景。
2025-09-03 18:05:28
1008
原创 一口气讲完8种锁!乐观、悲观、可重入、公平,自旋、重量级、轻量级、偏向
摊位的门是锁住的,只有一个人能持有这把锁。由于摊位的门是可重入的,大姨A可以在挑选一种菜后,继续去隔壁挑选其他菜,大姨B想进来,必须等A买完全部菜才可。在偏向锁的机制中,前两步操作与轻量级锁相同,但当同一线程的不同方法再次调用此锁时,锁的Mark Word会记录该线程的ID。这个市场的摊位没有上锁,大姨A和大姨B都可以随时进去挑菜,她们在进摊位前记下摊位上的菜有多少,操作结束时检查菜的数量,如果发现不一致就重试。:偏向锁的目的是在无竞争的情况下,通过消除不必要的轻量级锁操作,实现更高效的锁获取和释放。
2025-09-03 13:38:56
971
原创 【 HarmonyOS 6 】HarmonyOS智能体开发实战:Function组件和智能体创建
核心价值其实就一点:你先在小艺开放平台把自己的智能体上线,然后通过Agent Framework Kit,就能让用户在你的App里,通过Kit提供的UI控件主动打开这个智能体。比如App首页的智能体入口按钮,不带具体的用户意图,点进去就是智能体的主界面。比如在创建任务页面,我把按钮标题设为“智能生成任务”,queryText设为“帮我生成本周的工作计划”,用户点这个按钮,拉起智能体就直接带了明确的意图,体验更顺畅。傻瓜操作,在小艺开放平台上,点击创建后,使用自然语言描述你的智能体的功能和作用。
2025-09-03 00:04:47
574
原创 【Docker项目实战】使用Docker部署Nexterm服务器管理工具
NextTerm 提供了一个图形化的用户界面(GUI),使得用户可以通过直观的操作来连接到远程服务器,而无需直接在命令行中输入复杂的指令。该工具支持多种远程连接协议,包括但不限于SSH用于命令行访问、VNC用于图形桌面共享、以及RDP用于Windows远程桌面连接。1.本次实践部署环境为个人测试环境,生产环境请谨慎;2.在Docker环境下部署Nexterm服务器管理工具。
2025-09-02 23:35:49
964
原创 夏去秋来,笔墨正好!「9 月征文更文活动」正式启动!
无需追求华丽的辞藻,只需还原真实的技术场景、清晰的解决逻辑 —— 你的每一篇实战博客,都可能帮同行避开一个「深坑」,少走一段弯路。同时,我们为大家整理了容易被百度收录的关键词,当你写作的时候,可以直接选择热点且擅长的关键词进行博文创作。e、搬家文章不计入活动统计内。1、每位博主均可以参加以上任务,但不可使用多个账号参与本活动任务,一经发现全部取消活动资质。活动结束后,会根据活动规则对活动文章进行复核,不符合要求的内容、阅读量造假等不予发奖、评奖;1、关于活动,你有任何不清楚的地方,都可以咨询小助手↓。
2025-09-02 14:27:16
302
原创 【微服务】SpringBoot 整合 Easy-Es 实战操作详解
在使用SpringBoot 进行微服务的开发中,Elasticsearch是一种高频使用的文档检索性数据库,在很多需要实时检索,或者对文档检索性能要求比较高的场景。在这样的业务场景中,经常会涉及到对Elasticsearch的文档数据的增删改查操作,对很多程序员来说,写习惯了通过mybatis操作mysql的语法,对于操作es的代码,写起来还是比较头疼的,主要是API的编写比较复杂,语法多样灵活,本篇将介绍另一种适合大多数程序员快速上手用于操作es的技术框架Easy-Es。
2025-09-02 14:21:32
844
原创 「有奖知识竞猜,谁行谁UP」金融大模型,安全守护者PK赛!
大模型的安全漏洞, 正在成为金融机构应用大模型的“致命暗礁”。你的企业能否在模型幻觉、数据泄露、 不良信息输出、算力攻击等新型风险中筑牢防线?参与金融大模型安全守护者PK赛, 测测你的安全防御认知能击败多少同行?
2025-09-02 14:11:58
198
原创 面试官最爱问的坑:MySQL 中 FLOAT 和 DOUBLE 你真懂吗?
精度不足:FLOAT常常丢精度,DOUBLE虽然更好,但也不是绝对精确。计算误差:浮点数运算存在四舍五入、进位问题。显示差异:存进去的数和查询出来的数可能“肉眼不一样”。不适合货币:财务类应用必须用DECIMAL。兼容性问题:某些语言(如Java、Python)取MySQL浮点数时,会遇到二进制转十进制的小数问题,要特别小心。FLOAT:单精度,4字节,7位有效数字。DOUBLE:双精度,8字节,15-16位有效数字。2、区别存储空间不同。精度范围不同。都会有误差,不适合存货币。3、最佳实践。
2025-09-02 14:10:32
816
原创 基于华为开发者空间项目同步能力实现java电商项目部署
华为开发者空间,是为全球开发者打造的专属开发者空间,致力于为每位开发者提供一台云主机、一套开发工具和云上存储空间,汇聚昇腾、鸿蒙、鲲鹏、GaussDB、欧拉等华为各项根技术的开发工具资源,并提供配套案例指导开发者 从开发编码到应用调测,基于华为根技术生态高效便捷的知识学习、技术体验、应用创新。开发者空间重磅推出智能项目同步功能,彻底打通云主机与GitCode平台的数据通道,实现GitCode代码仓库与云主机的无缝衔接。
2025-09-02 11:26:45
702
原创 百度网盘基于Flink的实时计算实践
△ 细粒度算子并行度优化Tiangong计算引擎本质基于做的混合计算引擎,其本质相当于Flink SQL,因此一旦定义好Source和Sink并行度后,其任务所涉及的计算、清洗、聚合等算子都与Source端并行度一致,从而导致如果想要增加清洗等算子的并行度需要把Source的并行度也增加,从而造成资源浪费、性能降低等问题。△ 资源共享策略优化支持按照算子类型将算子划分到一个slot group中,从而来减少数据的跨网络传输、提升资源利用率以及提升计算性能等。
2025-09-02 11:08:59
986
原创 基于仓颉编程语言的四则运算解释器开发秘籍
MathInterperter 是基于数学表达式解析器组合子的计算器,能够精准处理包含四则运算和多重括号嵌套的复杂表达式。仓颉编写的解释器通过枚举动态构建抽象语法树 Expression,简化代码结构的同时进行高效求值。其核心功能包括运算符优先级的自动识别、实时语法校验及表达式求值。通过实际操作,让大家深入了解如何进行华为云的开发者云主机完成CodeArts IDE for Cangjie编辑器的部署,并利用该编译器实现MathInterpreter解释器组合子的实际作用,体验其在模型开发中所扮演的角色。
2025-09-02 10:17:04
553
原创 【HarmonyOS】一步解决弹框集成-快速弹框QuickDialog使用详解
最近比较忙,除了工作节奏调整,有重点项目需要跟。业务时间,也因为参加了25年创新大赛,我们网友,组成了鸿蒙超新星研发团队,经过两个月的人员加入和磨合,现已分为三个元服务小组,两个应用小组,正式参加了比赛。团队多来自全国各地的校园开发者,例如上海交大的博士同学。当然为保证项目贴近行业技术前沿,也邀请了来自大厂的开发者加入,帮忙进行项目框架的搭建和前沿鸿蒙技术的调研。其中BONNET小组负责开发的应用,《鸿社圈子》。作为主攻校园平台的鸿蒙学习资源与社群应用。
2025-09-01 20:56:22
952
原创 机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。研究发现,通过人工反馈循环可以有效提升模型性能,将无监督异常检测的结果转化为有价值的训练数据。这种方法特别适用于缺乏历史标记数据但需要快速响应新兴威胁的场景。对于实际应用而言,自动化人工审查系统和开发创建欺诈交易规则的结构化方法将是对所提出方法的关键增强。
2025-09-01 14:12:04
1004
原创 Linux Shell脚本案例:将本地maven仓库的jar包批量上传至Nexus
nexus 在内网部署好之后,里面没有任何 jar 包。我们可以在外网搭建好项目,并将所依赖的 jar 包下载到了本地仓库,然后将本地仓库的 jar 包导入内网,批量上传到 nexus 中,团队成员就可以使用 nexus 作为远程仓库,方便 jar 包的统一管理,提高开发效率。
2025-09-01 12:30:48
640
原创 如何使用backtrace定位Linux程序的崩溃位置
本篇介绍了如何使用backtrace工具来定位Linux应用程序崩溃的位置信息,首先通过signal捕获崩溃信息,然后通过backtrace记录崩溃时的堆栈调用信息,最后使用addr2line来显示对应的崩溃时的代码行号。
2025-09-01 12:17:01
688
原创 试试流量回放,不用人工写自动化测试case了
流量回放从字面意思理解,流量可以理解成互联网上发送和接收数据的量,由于我们网络通信协议一般都是HTTP请求,前后端交互方式一般通过后端API接口,所以流量的形式可以理解成线上的接口请求数量而回放就是改变接口请求信息的位置,比如存放在到线下的数据库,Redis,或者分布式大数据集群中,也可以不经过存储进行实时回放,使得我们能够对线上流量进行利用流量回放再通俗理解成两个字,就是引流流量回放可以将流量进行拷贝后直接使用,也能把流量放大、流量缩小后使用流量拷贝指的是将线上正式流量通过改写业务逻辑tcpcopy。
2025-09-01 12:06:21
618
原创 解决语义搜索痛点,基于对比学习的领域特定文本嵌入模型微调实践
本文深入探讨了基于对比学习的嵌入模型微调技术,并通过AI职位匹配的实际案例验证了该方法的有效性。微调后的模型在测试集上实现了100%的准确率,充分证明了针对特定领域进行模型优化的必要性和可行性。嵌入模型微调不仅解决了通用模型在专业领域表现不佳的痛点,更为构建高质量的语义搜索系统提供了切实可行的技术路径。通过精心设计的对比学习框架,模型能够更好地理解领域特定的语义关系,显著提升检索的精确性和相关性。展望未来,嵌入技术将朝着更加智能化和多元化的方向发展。
2025-09-01 12:01:58
665
原创 基于LSTM自编码器与KMeans聚类的时间序列无监督异常检测方法
Numenta异常基准(NAB)是一个综合性的时间序列异常检测评估框架,涵盖了工业测量传感器数据、真实网络流量监控数据、在线广告交换系统数据以及合成生成的模拟数据等多个应用领域的时间序列样本。本文选用NAB数据集中的artificialWithAnomaly子集作为实验数据。该子集包含人工合成的时间序列数据,其中注入了预定义的异常模式,为无监督异常检测算法的有效性验证提供了理想的测试环境。数据集的每条记录由时间戳和对应的数值组成,模拟了实际应用场景中的监测指标变化。
2025-09-01 12:00:36
968
原创 小模型当老师效果更好:借助RLTs方法7B参数击败671B,训练成本暴降99%
强化学习教师模型(RLT)从根本上重新定义了训练范式。与传统方法要求模型自主解决问题不同,RLT预先提供问题的解决方案。在训练过程中,RLT教师模型同时接收问题和正确答案作为输入。教师的任务不是重新发现答案,而是解释为什么该答案是正确的。这类似于优秀的人类教师无需在每堂课上重新推导已知定理,而是专注于清晰地解释其原理。这种方法被称为"学习教学"范式。核心思想是使用专门设计的奖励函数来训练教师,该奖励函数衡量教师的解释对帮助学生模型理解解决方案的有效性。
2025-09-01 12:00:25
918
原创 详细实例说明+典型案例实现 对动态规划法进行全面分析 | C++
简单的来说,算法就是用计算机程序代码来实现数学思想的一种方法。学习算法就是为了了解它们在计算机中如何演算,以及在当今的信息时代,它们是如何在各个层面上影响我们的日常生活的,从而提高我们的逻辑思维能力和处理实际问题的能力。善用算法、巧用算法,是培养程序设计逻辑的重中之重,许多实际的问题都可用多个可行的算法来解决, 但是要从中找出最优的解决算法却是一项挑战。20世纪50年代初,动态规划法由美国数学家R.E.Bellman所创造,它很类似于分治法并且用来研究多阶段决策问题的优化过程和对问题最优解的求法。
2025-09-01 11:51:05
843
原创 【奇妙的数据结构世界】用图像和代码对链表的使用进行透彻学习 | C++
简单来说,数据结构是一种辅助程序设计并且进行优化的方法论,它不仅讨论数据的存储与处理的方法,同时也考虑到了数据彼此之间的关系与运算,从而极大程度的提高程序执行的效率,减少对内存空间的占用等。不同种类的数据结构适用于不同的程序应用,选择合适正确的数据结构,可以让算法发挥出更大的性能,给设计的程序带来更高效率的算法。链表也被称为动态数据结构,它使用不连续的内存空间来存储数据元素,由许多相同数据类型的数据项按特定顺序排列而成的线性表。
2025-09-01 11:50:49
679
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人