numpy的随机抽样

本文详述了NumPy库中如何使用numpy.random.seed()设置随机种子,以及如何进行离散型随机变量的抽样,包括从正态分布等离散分布中获取样本。此外,还介绍了其他随机函数,如从1-D数组中随机采样和序列洗牌操作,为深度学习的数据预处理提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

本文简单介绍NumPy如何产生符合某种特定分布随机变量的样本

使用numpy.random.seed()

  • numpy.random.seed(seed=None) Seed the generator 其使用目的是给随机数产生器提供一个seed,使随机的结果可以重复产生,但是这个方法是全局的即意味会影响整个numpy,目前推荐使用RandomState这个类来产生单个的实例。

离散型随机变量

numpy如何实现对离散随机变量的抽样

  • scipy.stats来产生离散型的随机变量,可以非常方便的获得其统计值例如mean和variance, 还可以求得PMF,PPF, CDF
    代码如下(示例):
# Initialize the random variable
import scipy.stats as st
X = st.bernoulli(0.25)
# array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1])
# You can also compute the mean and variance of a random variable:
X.mean(), X.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值