机器学习助力嵌入式系统安全防护
1. 安全威胁现状
如今,计算设备的攻击面正变得日益复杂,主要由以下三大因素驱动:
- 物联网设备数量激增 :到2025年,物联网设备数量预计将达到约500亿。这使得攻击者更容易发动攻击、提取敏感数据或注入恶意软件。例如,根据SonicWall的全球网络攻击趋势报告,2020年物联网设备的恶意软件攻击比2019年激增了66%,从3430万起增至近5690万起。
- 网络与物理层融合加深 :在工业系统中,网络与物理层的融合日益增强,这使得工业系统成为国家支持攻击的主要目标。比如2015年,一次有组织的破坏性网络攻击使乌克兰的三个地区发电厂陷入瘫痪。
- 硬件供应链外包增长 :硬件供应链外包的显著增长带来了新的安全攻击挑战,如硬件特洛伊木马插入、IP盗版和IC仿冒。这些攻击方法严重破坏了计算系统的可信度,因为它们损害了信任的根源——硬件层。若受影响的硬件产品用于关键基础设施和军事应用,将构成严重的安全威胁。例如,美国参议院军事委员会2012年的一份报告指出,超过100万个疑似仿冒电子元件被用于1800起影响美国军事硬件的独立案件中,包括飞机、直升机、导弹和电子战系统。
面对这种不断演变且复杂的安全威胁格局,基于机器学习的自适应对策应运而生。机器学习是一种以数据为中心的方法,通过开发从过往经验中学习的计算模型来应对安全挑战。机器学习算法主要分为两类:
- 监督学习技术 :使用标记数据集训练算法,使其能够准确分类传入数据。
- 无监督学习算法