T1
P1372 又是毕业季I(https://www.luogu.org/problemnew/show/P1372)
题目背景
“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!
题目描述
为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排。可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~)。这可难为了他,请你帮帮忙吧!
PS:一个数的最大公约数即本身。
输入输出格式
输入格式:
两个空格分开的正整数n和k。(n>=k>=1)
输出格式:
一个整数,为最大的默契值。
输入输出样例
输入样例#1: 复制
4 2
输出样例#1: 复制
2
说明
【题目来源】
lzn原创
【数据范围】
对于20%的数据,k<=2,n<=1000
对于另30%的数据,k<=10,n<=100
对于100%的数据,k<=1e9,n<=1e9(神犇学校,人数众多)
注:此题解为搬运的
此题简化后就是:从1~n中取k个数,使这k个数的最大公约数最大
那么,我们索取的k个数之间应该具有某种倍数关系。
那么,如果我们把整个区间分成多个段,这些段的长度相同。这样就可以让它们的最大公约数尽量大。
因为,如果只有两个数,它们的最大公约数如果想要最大,那么只有在它们的差最接近最小的数的情况下最大公约数是最大的。一个数的最大公约数就是它本身,那么两个数的最大公约数就是它们两个数的最小值。
我们把n个数看做一个区间
如果k为2,那么只有两个数。这两个数应该为这个区间的中点和末尾。
如果k=3,那么要把区间分成三份。这三个数就是区间的1/3、2/3、末尾。
那么如果有k个数,就要把区间划分成k份。这k个数就是区间的1/k、2/k、3/k······n。
那么它们的最大公约数就是这些数的最大公约数。而k个数的最大公约数在它们具有倍数关系的情况下就是它们的最小值。也就是这些区间端点的最小的一个。那就是n/k。
#include <iostream>
using namespace std;
int main()
{
int n,k;
cin >> n >> k;
cout << n/k << endl;
return 0;
}
T
P1414 又是毕业季II(https://www.luogu.org/problemnew/show/P1414)
题目背景
“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!
题目描述
彩排了一次,老师不太满意。当然啦,取每位同学的号数来找最大公约数显然不太合理。于是老师给每位同学评了一个能力值。于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大。但因为节目太多了,而且每个节目需要的人数又不知道。老师想要知道所有情况下能达到的最大默契程度是多少。这下子更麻烦了,还是交给你吧~
PS:一个数的最大公约数即本身。
输入输出格式
输入格式:
第一行一个正整数n。
第二行为n个空格隔开的正整数,表示每个学生的能力值。
输出格式:
总共n行,第i行为k=i情况下的最大默契程度。
输入输出样例
输入样例#1: 复制
4
1 2 3 4
输出样例#1: 复制
4
2
1
1
说明
【题目来源】
lzn原创
【数据范围】
记输入数据中能力值的最大值为inf。
对于20%的数据,n<=5,inf<=1000
对于另30%的数据,n<=100,inf<=10
对于100%的数据,n<=10000,inf<=1e6
此题的意思为从n个数字中任选k个数字,求出k个数字的最大公约数
解题思路:要求是k个数字的公约数的意思为,有一个数字(因子)可以作为最少k个数字的因子,然后找出能够成为k个数中因子最大的那个,也就是最大公约数
具体做法 就是用一个v[maxn]数组来存放因子出现的次数,数组的下标为因子,通过枚举每个数字,将所有的因子出现的次数全部存起来。如果从中找k个数字最大公约数,那么公因子出现的次数一定大于等于k。由于要找最大公因子,那么公因子就从大到小枚举
还有一个要理解的是若k个数字的最大公因数为m,那么h(h<k)个数字的最大公因数一定大于m
#include <iostream>
using namespace std;
const int maxn=1e6+2;
int v[maxn];//存放因子的个数,v[i]代表因子为i的个数
int main()
{
int n;
cin >> n;
int ans=0;
for(int i=1;i<=n;i++)//枚举每一个数字,找出所有的因子
{
int x;
cin >> x;
ans=max(ans,x);
for(int j=1;j