YOLOX: Exceeding YOLO Series in 2021 论文阅读笔记

YOLOX: Exceeding YOLO Series in 2021 论文阅读笔记

在这里插入图片描述这是一篇由旷视科技提出的2021超越YOLO系列的论文:YOLOX

出处:CVPR 2021

在这里插入图片描述

摘要

文章介绍了 YOLO 系列的一些经验改进,形成了一个新的高性能探测器——YOLOX:

  1. anchor-free(无anchor)
  2. decoupled head(解耦头)
  3. label assignment strategy SimOTA(标签分配策略,基于作者的另一篇论文:Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian Sun. Ota: Optimal transport assignment for object detection.In CVPR, 2021.)

速度、参数量和检测效果:

  1. YOLOX-Tiny和YOLOX-Nano(只有0.91M参数量和1.08G FLOPs)比对应的YOLOv4-Tiny和NanoDet3分别高出10% AP和1.8% AP;
  2. 将工业界常用的YOLOV3在COCO上的AP提升至 47.3%,表现优于将当前最佳,提高了 3.0% AP;
  3. YOLOX-L和YOLOv4-CSP、YOLOv5-L有差不多参数量的情况下,YOLOX-L在COCO上取得50.0%AP(比YOLOv5-L高出1.8%的AP),且YOLOX-L在单张Tesla V100上能达到68.9FPS。

一、介绍

随着目标检测的发展,YOLO系列方法一直在实时性应用中追求速度和准确性的平衡。例如将anchors应用到YOLOv2中,将Residual Net 应用到YOLOv3中,现在YOLOv5取得了最好的平衡性能,在COCO上以13.7

### YOLO系列相关学术论文 YOLO(You Only Look Once)是一种高效的实时目标检测框架,其核心理念在于通过单次前向传播完成目标分类与定位的任务[^1]。以下是YOLO系列的主要学术论文及其相关内容: #### 1. YOLOv1: Unified Detection Network 最初的YOLO版本由Joseph Redmon等人于2015年提出,发表在CVPR 2016上。该论文首次提出了统一的目标检测方法,将图像划分为网格并预测边界框和类别概率。 - 论文标题:**You Only Look Once: Unified, Real-Time Object Detection** - 发表时间:2016年 - 链接:[YOLOv1 Paper](https://arxiv.org/abs/1506.02640) #### 2. YOLOv2: Improving Recall and Speed YOLOv2进一步改进了原始模型,在保持速度的同时提高了精度。它引入了锚框机制以及更复杂的特征提取器Darknet-19。 - 论文标题:**YOLO9000: Better, Faster, Stronger** - 发表时间:2017年 - 链接:[YOLOv2 Paper](https://arxiv.org/abs/1612.08242) #### 3. YOLOv3: Scalable Object Detection YOLOv3扩展了多尺度预测的能力,并采用了多个卷积层来捕获不同大小的对象。此版本支持更多的对象类别,并增强了鲁棒性。 - 论文标题:**YOLOv3: An Incremental Improvement** - 发表时间:2018年 - 链接:[YOLOv3 Paper](https://arxiv.org/abs/1804.02767) #### 4. YOLOv4: Optimal Speed and Accuracy of Object Detection YOLOv4专注于优化训练过程中的超参数调整和技术应用,从而显著提升了性能。作者还提供了详细的实验分析说明哪些技术最有效[^2]。 - 论文标题:**YOLOv4: Optimal Speed and Accuracy of Object Detection** - 发表时间:2020年 - 链接:[YOLOv4 Paper](https://arxiv.org/abs/2004.10934) #### 5. YOLOv5: Open Source Implementation by Ultralytics 虽然官方未发布正式的YOLOv5论文,但Ultralytics团队基于之前的工作开发了一个开源版本,广泛应用于工业界项目中。 #### 6. YOLOX: Enhanced Version Beyond Traditional YOLOs YOLOX是由Megvii研究院提出的增强版YOLO架构,集成了多种现代计算机视觉技术如解耦头设计、无锚点检测等,超越了许多SOTA模型的表现。 - 论文标题:**YOLOX: Exceeding YOLO Series in 2021** - 发表时间:2021年 - 链接:[YOLOX Paper](https://arxiv.org/abs/2107.08430) ```python import torch from yolov5 import detect if __name__ == "__main__": model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 加载预训练模型 results = model('example.jpg') results.print() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值