Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression (论文阅读笔记)

本文提出了一种新颖的PowerIoU系列Loss,即α-IoU,针对目标检测中的bbox回归问题。通过引入幂次IoU项和正则项,α-IoU在保持IoU损失关键性质的同时,能自适应调整对高IoU目标的关注度,显著提升精度。实验结果表明,α-IoU在多种模型和基准数据集上表现出色,尤其在小数据集和噪声场景中展现出更强的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

摘要

Bounding box(bbox)回归是CV中的一项基本任务,最常用的损失函数是IOU Loss 和相关变体。文章将现有的基于IoU Loss推广到一个新的Power IoU系列 Loss,它具有一个幂次IoU项和一个附加的幂次正则项。这种新的损失系列为α-IoU Loss。
在多个目标检测基准和模型上的实验表明,α- iou损失

  1. 可以显著的超过现有的基于iou的损失;
  2. 通过调节α,使探测器更灵活地实现不同水平的bbox回归精度;
  3. 对小数据集和噪声的鲁棒性更强。

一、介绍

目标检测通常包含分类预测和回归预测(bounding box的预测)。早前的bbox回归采用的是L_n范式,最近的相关工作则直接采用IOU Loss作为定位损失。

IOU Loss损失对bbox scales是不变的,所以能够更好的训练检测器,但是当预测框和真实框没有重叠的时候存在梯度消失的问题,从而导致降低收敛速度和检测精度。所以就有了IOU Loss的相关变体: Generalized IoU (GIoU), Distance-IoU (DIoU) and Complete IoU (CIoU)。

GIoU在IoU loss 中加入了惩罚项来减轻梯度消失的问题,DIoU和CIoU在惩罚条件下考虑了预测框和真实框之间的中心点距离和长宽比。

文章对现有的基于IoU Los采取幂变换提出了一个新的IoU losser family:
在这里插入图片描述
并且通过实验发现,在大多数情况下,取α=3的效果最好。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值