判断链表是否有环及环入口点的求法

本文详细阐述了如何通过设置快慢指针的方法判断单链表是否存在环,并深入探讨了如何在已知存在环的情况下,求解环的入口点。通过数学推导,展示了从链表起点和相遇点出发,以步长为1的方式遍历链表,最终在环的入口点相遇的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,判断一个单链表是否有环。网上有很多解法就是设置两个指针fast,slow分别指向链表头部,然后同时向后遍历。fast步长为2即每次走两步,slow每次走一步。如果fast走到链表尾部则肯定没有环,因为如果有环肯定是如下图所示的样子。

如果fast和slow相遇则有环。有没有可能在有环的情况下fast和slow永远不相遇呢?假设在某个时间slow走过的路程为S而且slow已经在环上了,则fast走过的为2S。因为fast是速度是slow的两倍。假设环的长度为L,fast和slow不相遇的条件就是(2S - S) % L != 0永远成立,因为fast和slow相遇即在某一时刻fast比slow多走过了n(n>=1)圈,(2S - S) % L == S % L != 0是不是会永远成立?明显不会,因为S每次增加1,总有一天会等于0成立。

现在假设已经知道了有环,来求环的入口点。

如上图所示,我们先作如下的假设:

链表起点为A点;

环的入口为B点;

fast和slow的相遇点为C;

链表的方向为顺时针;

A到B的距离为X;

B到C的距离为Z;

C到B的距离为Y。

则有如下的结果成立:

1. X + Z = S;

2. X + Z + nL = 2S;

3. Y + Z = L;

即X + Z + nL = 2X + 2Z -> X = nL - Z = nL - (L - Y) = (n - 1)L + Y。最后的结果就是X = (n - 1)L + Y,其中n>=1。也就是说从A和C点同时出发,以步长为1遍历链表,那么在C处出发的指针在多走了n-1圈之后与从A出发的指针在B处相遇。也就是说两个指针指向同一个节点的时候这个点就是环的入口点。



原作者like:http://www.cnblogs.com/likeio/p/3593686.html

<think>好的,用户现在问的是如何判断链表是否。我之前刚回答了关于用两个栈模拟队列的问题,现在需要切换到这个新问题。首先,我得回忆一下链表检测的常见方法,最经典的就是快慢指针法。不过,用户可能需要更详细的解释,包括其他方法,比如哈希表法,或者可能的应用场景。 用户可能的需求是什么呢?他们可能是在准备面试题,或者在学习数据结构的基础知识。所以需要给出清晰的步骤,可能的时间复杂度分析,以及不同方法的优缺比较。另外,用户可能对实现细节感兴趣,比如具体的代码示例,或者如何证明快慢指针的正确性。 然后,我需要考虑用户可能的背景。如果是初学者,可能需要更通俗的解释,避免使用太多专业术语。但根据之前的回答,用户可能已经有一定的数据结构基础,所以可以适当深入,但保持易懂。 接下来,我需要组织回答的结构。通常,先介绍问题,然后列出不同的解决方法,再详细说明每个方法的步骤,时间复杂度,空间复杂度,以及可能的代码示例。最后总结哪种方法更优,适用场景等。 对于快慢指针法,需要解释为什么两个指针会相遇。比如,快指针每次走两步,慢指针走一步,如果有,快指针会追上慢指针。可能需要数学证明,比如相对速度的问题,这样用户才能理解为什么这样可行。 哈希表法则是遍历链表,记录每个节,如果遇到重复的节,说明有。这种方法虽然容易理解,但空间复杂度较高,O(n)。需要比较两者的优缺,快慢指针的空间复杂度是O(1),但时间复杂度可能稍高吗?其实两者都是O(n),但快慢指针不需要额外空间,所以更优。 可能还需要提到边界情况,比如链表为空,或者只有一个节的情况如何处理。代码示例中是否需要处理这些情况?比如在Python中,检查节是否存在,或者循的条件设置。 另外,用户可能会问,如果链表入口在哪里,或者如何找到的长度。不过当前问题只是判断是否,所以可能需要分清楚,但如果有余力,可以稍微提一下,但不要偏离主题。 还有,是否需要图示辅助说明?虽然在文本中无法画图,但可以用文字描述,比如快慢指针在中的移动过程,或者哈希表存储节的过程。 最后,确保回答符合用户之前设定的格式要求,比如使用中文,结构清晰,分步骤说明,可能包括代码示例。同时检查LaTeX的数学公式是否正确,比如时间复杂度用$O(n)$表示。 现在总结一下,回答的结构应该是: 1. 问题介绍:什么是链表,为什么需要检测。 2. 方法一:快慢指针法(Floyd判圈算法) - 步骤 - 时间复杂度、空间复杂度 - 正确性证明(简要) - 代码示例 3. 方法二:哈希表法 - 步骤 - 复杂度分析 - 代码示例 4. 方法比较:优缺,适用场景 5. 应用场景:比如检测链表结构正确性,内存管理中的循引用检测等 6. 常见问题解答:比如为什么快指针走两步,能否走更多步?哈希表法的节比较问题等 需要确保语言简洁明了,避免冗长,但覆盖关键。此外,代码示例要正确,符合Python或其他常见语言的语法,并注释关键步骤。 可能还需要注意,在快慢指针法中,循的条件是fast和fast.next都不为空,否则会出现空指针异常。这在代码中要体现出来,比如检查fast.next是否存在再移动两步。 另外,哈希表法中,节是否可以作为键存储?在Python中,对象是可以作为字典的键的,因为每个节的内存地址不同,所以即使值相同,不同的节也会被识别为不同的键。这一可能需要说明,避免用户误解。 最后,测试用例的举例,比如构造一个有链表,让用户更直观地理解过程。例如,链表1->2->3->4->2(形成),如何被检测到。 总的来说,需要将各个部分组织得逻辑清晰,逐步引导用户理解问题及其解决方案,同时提供足够的技术细节和实际代码,帮助用户掌握实现方法。</think>### **判断链表是否的方法详解** --- #### **1. 问题定义** 链表中的 **** 是指某个节的 `next` 指针指向了链表中已经遍历过的节,导致链表尾部形成闭判断链表是否数据结构中的经典问题,常用于检测链表结构的正确性。 --- #### **2. 解决方法** ##### **方法一:快慢指针(Floyd 判圈算法)** **核心思想**:使用两个指针,快指针(每次走两步)和慢指针(每次走一步)。若链表,快指针最终会追上慢指针。 **步骤**: 1. 初始化 `slow` 和 `fast` 指针均指向头节。 2. 循移动指针: - `slow = slow.next` - `fast = fast.next.next` 3. **终止条件**: - 若 `fast` 或 `fast.next` 为 `null`,说明链表。 - 若 `slow == fast`,说明存在。 **数学证明**: - 假设的周长为 $C$,快慢指针进入后的距离差为 $C - 1$。 - 快指针每步比慢指针多走 $1$,经过 $C - 1$ 步后追上慢指针。 **时间复杂度**:$O(n)$(无遍历一次链表,有时最多循 $2n$ 步)。 **空间复杂度**:$O(1)$(仅需两个指针)。 **代码示例(Python)**: ```python class ListNode: def __init__(self, x): self.val = x self.next = None def has_cycle(head: ListNode) -> bool: if not head or not head.next: return False slow = head fast = head.next while fast and fast.next: if slow == fast: return True slow = slow.next fast = fast.next.next return False ``` --- ##### **方法二:哈希表法** **核心思想**:记录已访问的节,若重复访问则存在。 **步骤**: 1. 初始化哈希表(如字典或集合)。 2. 遍历链表,每访问一个节: - 若节已在哈希表中,说明有。 - 否则将节存入哈希表。 3. 遍历到 `null` 时无。 **时间复杂度**:$O(n)$。 **空间复杂度**:$O(n)$(需存储所有节)。 **代码示例(Python)**: ```python def has_cycle_hash(head: ListNode) -> bool: visited = set() current = head while current: if current in visited: return True visited.add(current) current = current.next return False ``` --- #### **3. 方法对比** | 方法 | 时间复杂度 | 空间复杂度 | 适用场景 | |--------------|------------|------------|------------------------| | 快慢指针 | $O(n)$ | $O(1)$ | 内存受限或长链表 | | 哈希表 | $O(n)$ | $O(n)$ | 需要快速实现,无内存限制 | --- #### **4. 应用场景** - **链表结构验证**:确保单向链表(如文件系统目录树检测)。 - **内存泄漏检测**:循引用可能导致内存无法释放。 - **算法题**:如 LeetCode 的链表问题([#141](https://leetcode.com/problems/linked-list-cycle/))。 --- #### **5. 常见问题** **Q1:为什么快指针走两步?能否走三步或更多?** - **答**:走两步可确保在有限步内相遇。若快指针走 $k$ 步,需满足 $k - 1$ 与长互质,否则可能无法相遇。两步是效率与实现的平衡选择。 **Q2:如何找到入口?** - **答**:快慢指针相遇后,将慢指针重置到链表头,两指针同速移动,再次相遇即为入口(数学证明见 Floyd 算法扩展)。 --- #### **总结** - **推荐快慢指针**:空间复杂度低,适合大规模数据。 - **哈希表法**:直观易实现,但需额外内存。 - **关键**:理解快慢指针的追赶逻辑,掌握时间复杂度分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值