Educational Codeforces Round 103 (Rated for Div. 2) A. K-divisible Sum

针对给定的n和k,构造一个长度为n的数组,其元素之和能被k整除,且该和尽可能小。求解此条件下数组的最大元素。通过数学推导确定了构造方法,并给出具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

题目大意:
给两个数 n 和 k,构造一个有 n 个数的数组 a,使得 a 数组的总和 s 可以整除 k。求使 s 最小时最大的 ai

思路:
①因为 s % k == 0,所以 s = c * k。(c 为正整数)

②又因为需要构造的 a 数组均为正整,所以 s = c * k ≥ n。

③所以,c ≥ ⌈nk\frac {n} {k}kn⌉,若要使 s 最小,c = ⌈nk\frac {n} {k}kn⌉ = ⌊n+k−1k\frac {n + k - 1} {k}kn+k1⌋。

④易知最大的 ai ≥ ⌈sn\frac {s} {n}ns⌉。(反证法:若所有的 ai 均小于 ⌈sn\frac {s} {n}ns⌉,那么 s 一定小于 n,与 ② 矛盾)

⑤ 若使 ai 最小, ai = ⌈sn\frac {s} {n}ns⌉ = ⌊s+n−1n\frac {s + n - 1} {n}ns+n1⌋ = ⌊c∗k+n−1n\frac {c * k + n - 1} {n}nck+n1⌋。

#include<iostream>
using namespace std;

typedef long long LL;

int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        LL n,k;
        cin >> n >> k;
        
        LL c = (n + k - 1)/k;
        cout << (c*k + n - 1)/n <<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值