题目大意:
给两个数 n 和 k,构造一个有 n 个数的数组 a,使得 a 数组的总和 s 可以整除 k。求使 s 最小时最大的 ai。
思路:
①因为 s % k == 0,所以 s = c * k。(c 为正整数)
②又因为需要构造的 a 数组均为正整,所以 s = c * k ≥ n。
③所以,c ≥ ⌈nk\frac {n} {k}kn⌉,若要使 s 最小,c = ⌈nk\frac {n} {k}kn⌉ = ⌊n+k−1k\frac {n + k - 1} {k}kn+k−1⌋。
④易知最大的 ai ≥ ⌈sn\frac {s} {n}ns⌉。(反证法:若所有的 ai 均小于 ⌈sn\frac {s} {n}ns⌉,那么 s 一定小于 n,与 ② 矛盾)
⑤ 若使 ai 最小, ai = ⌈sn\frac {s} {n}ns⌉ = ⌊s+n−1n\frac {s + n - 1} {n}ns+n−1⌋ = ⌊c∗k+n−1n\frac {c * k + n - 1} {n}nc∗k+n−1⌋。
#include<iostream>
using namespace std;
typedef long long LL;
int main()
{
int t;
cin >> t;
while(t--)
{
LL n,k;
cin >> n >> k;
LL c = (n + k - 1)/k;
cout << (c*k + n - 1)/n <<endl;
}
}