[NOIP1999 普及组] 回文数
题目描述:
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个十进制数 56,将 56 加 65(即把 56 从右向左读),得到 121$是一个回文数。
又如:对于十进制数 87:
STEP1:87+78=165
STEP2:165+561=726
STEP3:726+627=1353
STEP4:1353+3531=4884
在这里的一步是指进行了一次 N$进制的加法,上例最少用了 4 步得到回文数 4884。
写一个程序,给定一个 N(2<=10或 N=16)进制数 M(100$位之内),求最少经过几步可以得到回文数。如果在 30$步以内(包含 30 步)不可能得到回文数,则输出 `Impossible!`。
输入格式:
两行,分别是 N,M。
输出格式:
如果能在 30$步以内得到回文数,输出格式形如 `STEP=ans`,其中 ans为最少得到回文数的步数。
否则输出 `Impossible!`。
样例 :
样例输入 #1
10
87
样例输出 #1
STEP=4
思路:
此题是一个多简单算法运用的题目,相当于求高精回文数。
因为:
既然是N进制数。
请把高精加中的——%10改为%n。
请把高精加中的——/10改为/n。
其他运算方式不变。