matlab实现VMD去噪、SVD去噪,源代码详解

为了更好的利用MATLAB自带的vmd、svd函数,本期作者将详细讲解一下MATLAB自带的这两个分解函数如何使用,以及如何画漂亮的模态分解图。

VMD函数用法详解

首先给出官方vmd函数的调用格式。

[imf,residual,info] = vmd(x)

函数的输入:

这里的x是待分解的信号,一行或者一列都可以!

函数的输出:

第一个参数位置--imf:vmd分解得到的IMF分量。

第二个参数位置--residual:残余分量,残差表示原始信号x中未被vmd分解的部分。

第三个参数位置--info,是一个结构体,包含以下信息:

ExitFlag——终止标志。值0表示算法在达到最大迭代次数时停止。值为1表示算法在满足绝对和相对公差时停止。

CentralFrequencies——IMF的中心频率。

NumIterations——迭代总数。

AbsoluteImprovement——在最后两次迭代之间,IMF收敛的均方绝对改进。

RelativeImprovement——在最后两次迭代之间,IMF收敛的平均相对改进。

LagrangeMultiplier ——上一次迭代时的频域拉格朗日乘数。

示例:

以西储大学轴承故障的105.mat为例,进行vmd分解展示。代码如下:

clcclearfs=12000;%采样频率Ts=1/fs;%采样周期L=2000;%采样点数t=(0:L-1)*Ts;%时间序列%----------------导入内圈故障的数据-----------------------------------------load 105.matX = X105_DE_time(1:L); %这里可以选取DE(驱动端加速度)、FE(风扇端加速度)、BA(基座加速度),直接更改变量名,挑选一种即可。[imf,residual,info] = vmd(X);figure(1);[p,q] = ndgrid(t,1:size(imf,2));plot3(p,q,imf)grid onxlabel('Time Values')ylabel('Mode Number')zlabel('Mode Amplitude')

选取105.mat的2000个采样点,进行分解,结果图如下所示:

还可以指定vmd的模态分解数和惩罚因子:

[imf,residual,info] = vmd(X,'NumIMF',6,'PenaltyFactor',2500,')

可以看到,模态分解数变成了6个。

当分解模态数较多的时候,还可以这样画图:

clcclearfs=12000;%采样频率Ts=1/fs;%采样周期L=2000;%采样点数t=(0:L-1)*Ts;%时间序列%----------------导入内圈故障的数据-----------------------------------------load 105.matX = X105_DE_time(1:L); %这里可以选取DE(驱动端加速度)、FE(风扇端加速度)、BA(基座加速度),直接更改变量名,挑选一种即可。[imf,residual] = vmd(X,'NumIMF',9);t1 = tiledlayout(3,3,TileSpacing="compact",Padding="compact");for n = 1:9    ax(n) = nexttile(t1);    plot(t,imf(:,n)')    xlim([t(1) t(end)])    txt = ["IMF",num2str(n)];    title(txt)    xlabel("Time (s)")endtitle(t1,"Variational Mode Decomposition")

结果如下:

VMD去噪

对分解的信号去除残余分量,然后进行重构,即为去噪,代码如下:

cleanX = sum(imf(:,2:8),2);figureplot(t,X,t,cleanX)legend("Original X","Clean X")xlabel("Time (s)")ylabel("Signal")

这里选用IMF2-IMF8进行相加,丢弃了IMF1和IMF9。为什么要这么做呢,以下MATLAB官方文档给出的解释:

第一种模式包含最多的噪声,第二种模式是以重要特征的频率振荡。通过对除第一个和最后一个VMD模式之外的所有模式求和来构建干净的X信号,从而丢弃低频基线振荡和大部分高频噪声。

结果如下:

105.mat下载地址:https://pan.baidu.com/s/1UX0dgLrW6SpjPFhML-OQeQ?pwd=puz2 


SVD去噪

SVD就是常见的奇异值分解,也算是一个古老的分解方法了。MATLAB官方关于svd的调用方法如下:

[U,S,V]=svd(A)

参数说明:A:要进行SVD分解的矩阵,且A不必为方阵。

U、S、V为返回的SVD分解的结果:

  • U:A的奇异向量组成的矩阵,AA’的正交单位特征向量组成U;

  • S:对角矩阵,对角元素是A的奇异值,非负且按降序排列;

  • V:A的奇异向量组成的矩阵,A’A的正交单位特征向量组成V。

SVD去噪:同样以105.mat为例:

clearclcload 105.matL=2000; %采样点数y = X105_DE_time(1:L); %这里可以选取DE(驱动端加速度)、FE(风扇端加速度)、BA(基座加速度),直接更改变量名,挑选一种即可。n=40;%=============================%==== 奇异值分解 ====for i=1:L/2+1t=i:i+L/2-1;for j=1:L/2A(j,i)=y(t(j)); %把一维信号重构为矩阵做奇异值分解endend[U,S,V] = svd(A);%=============================%==== 重构信号 =====X=zeros(size(A));for i=1:n  %选取前n个大奇异值X=X+U(:,i)*S(i,i)*V(:,i)';endJG=zeros(1,L);for i=1:La=0;m=0;for j1=1:L/2for j2=1:L/2+1if i+1==j1+j2a=a+X(j1,j2); %把矩阵重构回一维信号m=m+1;endendendJG(i)=a/m;end% JG(L/2+1:end)=X(:,end);figurefs=12000;%采样频率Ts=1/fs;%采样周期L=2000;%采样点数t=(0:L-1)*Ts;%时间序列plot(t,y,t,JG)legend("Original X","Clean X")xlabel("Time (s)")ylabel("Signal")title('奇异值降噪信号','FontSize',16)%set(gca,’linewidth’,1.5);set(gcf,'color','w')

105.mat下载地址:https://pan.baidu.com/s/1UX0dgLrW6SpjPFhML-OQeQ?pwd=puz2 


获取更多代码:

或者复制链接跳转:https://docs.qq.com/sheet/DU3NjYkF5TWdFUnpu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淘个代码_

不想刀我的可以选择爱我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值