hnucm_oj 算法分析与设计 练习16

这是一系列关于算法设计与分析的题目,包括时间安排问题、自守数计数、校园食堂男女同学配对、0-1背包问题、旅行售货员问题、递归求和、文件存储优化、递归求和、最大收益计算及蛋卷排列问题。通过解决这些问题,可以锻炼解决实际问题的算法思维和编程技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

湖中大OJ

问题 A:yangftc的时间安排

题目描述
yangftc需要安排他的时间,有很多事情做,每个事情都有固定的开始和结束时间,因为yangftc每次只能做一件事情,如果有两个或者多个事情的时间重合了那么他就会说 NO,否则他就会说 YES 。

输入
第一个数字t代表样例数量,
后面t个样例,每个样例输入一个n表示事情的数量,后面n行每行两个数字l r表示这个事情的开始和结束时间;

输出
判断yangftc会说什么 YES或者 NO 。
数据范围 1<=t<=500 1<=n<=100 1<=l<=r<=100000

样例输入
2
3
1 3
4 5
6 7
2
1 3
3 4

样例输出
YES
NO

#include<stdio.h>
#include<math.h>
int main()
{
   
   
    int n,t,i,j,m,k;
    scanf("%d",&t);
    for(i=0;i<t;i++)
    {
   
   
        scanf("%d",&n);
        int a[n],b[n];
        for(j=0;j<n;j++)
        {
   
   
            scanf("%d %d",&a[j],&b[j]);
        }
        for(j=0;j<n-1;j++)
        {
   
   
            for(k=0;k<n-1;k++)
            {
   
   
                if(b[k]>b[k+1])
                {
   
   
                    m=a[k];
                    a[k]=a[k+1];
                    a[k+1]=m;
                    m=b[k];
                    b[k]=b[k+1];
                    b[k+1]=m;
                }
            }
        }
        int flag=0;
        for(j=0;j<n-1;j++)
        {
   
   
            if(b[j]>=a[j+1])
            {
   
   
                flag=1;
                break;
            }
        }
        if(flag==0)
        {
   
   
            printf("YES\n");
        }
        else
        {
   
   
            printf("NO\n");
        }
    }
}

问题 B:自守数

题目描述
自守数是指一个数的平方的尾数等于该数自身的自然数。例如:25^2 = 625,76^2 = 5776,9376^2 = 87909376。请求出n以内的自守数的个数。

输入
int型整数。

输出
n以内自守数的数量。

样例输入
2000

样例输出
8

import java.util.Scanner;
  
public class Main {
   
   
  
    public static void main(String[] args) {
   
   
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()) {
   
   
            int n =sc.nextInt();
            int count = 0,flag = 0;
            for(int i = 1;i<=n;i++) {
   
   
                int j = i;
                long a = (long)j*j;
                while(j>0) {
   
   
                    if(j%10==a%10) {
   
   
                        j = j/10;
                        a = a/10;
                        flag = 1;
                    }
                    else {
   
   
                        flag = 0;
                        break;
                    }
                }
                if(flag==1) {
   
   
                    count++;
                }
            }
            System.out.println(count+1);
        }
    }
}

问题 C: 相聚HNUCM校园食堂

题目描述
HNUCM的食堂重新装修了,小明决定约上朋友去食堂相聚,在食堂里,小明看到了M位男同学,N位女同学,小明是一个颜值控,因此他对每一位男生和女生都有一个颜值打分,他心里yy着想为这些单身狗们进行配对,小明真是一个关心同学的人!但小明认为配对同学的颜值之差不能超过5,注意必须是一位男同学和一位女同学才能配对,虽然小明对于可以配对的人数已经有了答案,但他想考考你的编程能力,因此他想请你帮他用编程算一下最多可以配对多少个人。(本题介绍仅作题目背景使用,无任何其他观点)

输入
每个测试文件仅有一条测试数据。
第一行输入M,N,分别表示男同学的数量,女同学的数量。(1<=M<=100,1<=N<=100)
第二行输入M个正整数,分别表示男同学们的颜值。
第三行输入N个正整数,分别表示女同学们的颜值。
注意,所有人的颜值分数范围在[1,100]

输出
输出最多可以配对的总人数。

样例输入
5 4
10 65 23 67 80
5 15 60 90

样例输出
4

提示
样例中第一位男同学和第一位女同学配对,第二位男同学和第三位女同学配对。

import java.util.Scanner;
   
public class Main {
   
   
   
    public static void main(String[] args) {
   
   
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()) {
   
   
            int m = sc.nextInt();
            int n = sc.nextInt();
            int[] a = new int[m];
            int[] b = new int[n];
            for(int i = 0;i<m;i++) {
   
   
                a[i] = sc.nextInt();
            }
            for(int i = 0;i<n;i++) {
   
   
                b[i] = sc.nextInt();
            }
            for(int i = 0;i<m-1;i++) {
   
   
                for(int j = 0;j<m-i-1;j++) {
   
   
                    if(a[j]<a[j+1]) {
   
   
                        int t;
                        t = a[j];
                        a[j] <
### 关于第k小元素问题的算法分析设计 #### 问题描述 给定一个未排序的整数数组 `nums`,找到其中的第 k 小元素。假设输入的有效性已验证。 --- #### 算法分析 对于此类问题,可以采用多种方法来求解,以下是几种常见的解决方案及其优缺点: 1. **暴力排序法** 首先对整个数组进行升序排列,随后直接返回索引为 `(k-1)` 的元素作为结果。 时间复杂度为 \(O(n \log n)\),空间复杂度取决于使用的排序算法[^1]。 2. **堆排序法 (最小堆/最大堆)** 使用大小为 k 的最大堆存储前 k 个较小的元素。遍历剩余元素时,仅当发现更小的值才更新堆的内容。最终堆顶即为目标值。 此种方式的时间复杂度为 \(O(n \log k)\)[^3]。 3. **快速选择算法 (Quickselect)** 类似于快速排序的思想,通过选取枢轴(pivot)将数组划分为两部分:小于等于pivot的部分和大于pivot的部分。依据划分的结果调整搜索范围直至定位到目标位置。 平均情况下该方法具有线性时间复杂度\(O(n)\),但在最坏情况下的表现可能退化至\(O(n^2)\)。 4. **二分查找法** 如果允许修改原数组,则可以通过统计某个候选数值左侧的小于其数量是否达到或超过k来进行判定;否则需借助辅助结构如计数器等手段间接达成目的。这种方法适用于特定场景下优化性能需求较高的场合[^2]。 --- #### 示例代码 ##### 方法一:暴力排序法(Python 实现) ```python def find_kth_smallest(nums, k): sorted_nums = sorted(nums) return sorted_nums[k - 1] # 测试用例 print(find_kth_smallest([7, 10, 4, 3, 20, 15], 3)) # 输出应为 7 ``` ##### 方法二:堆排序法(C++ 实现) ```cpp #include <queue> #include <vector> int findKthSmallest(std::vector<int>& nums, int k){ std::priority_queue<int> maxHeap; for(auto num : nums){ maxHeap.push(num); if(maxHeap.size() > k){ maxHeap.pop(); } } return maxHeap.top(); } ``` ##### 方法三:快速选择算法(Java 实现) ```java public class QuickSelect { public static int findKthSmallest(int[] nums, int k){ return select(nums, 0, nums.length - 1, k - 1); } private static int partition(int[] a, int lo, int hi){ int i=lo, j=hi+1; while(true){ while(a[++i]<a[lo])if(i==hi)break; while(a[--j]>a[lo])if(j==lo)break; if(i>=j) break; swap(a,i,j); } swap(a,lo,j); return j; } private static void swap(int []a,int i ,int j ){ int temp=a[i]; a[i]=a[j]; a[j]=temp; } private static int select(int[] a, int lo, int hi, int k){ if(hi<=lo)return a[lo]; int j=partition(a,lo,hi); if(k<j-lo)a=j-lo; else if(k>j-lo)a=k-j+lo; else return a[j]; if(k<j-lo) return select(a,lo,j-1,k); else return select(a,j+1,hi,k-(j-lo)-1); } } ``` --- #### 性能比较总结表 | 方案 | 时间复杂度 | 空间复杂度 | |--------------|------------------|-------------| | 暴力排序法 | \(O(n\ log\ n)\)| 可变 | | 堆排序法 | \(O(n\ log\ k)\) | \(O(k)\) | | 快速选择算法 | 平均为\(O(n)\), 最差为\(O(n^2)\) | \(O(1)\) 或 \(O(log\ n)\) | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值